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Abstract-This work will present an experimental procedure
in identifying the moments of inertia, mass, and center of mass
of a rigid-body manipulator through natural oscillations. Based
on the response of the manipulator, the values of the dynamics
parameters to be identified are adjusted in such a way that
the desired natural oscillation is achieved. The experiments
to be performed on a manipulator under torque control are
composed of two sets: mass and center of mass identification.
and moments of inertia identification. The first set of experiments
will use an openJoop control, such that the natural oscillation is
minimized. The second set of experiments will use a proportional
control, such that the square of the natural oscillation is equal
to the proportional gain. Thus each set of experiments has a
well.defined objective function such that it can be treated as
an optimization computation. The correct dynamics parameters
are idenffied when the desired objective function is achieved.
The proposed dynamics identification method is analyzed and
a theorem is presented to support the claims presented in this
work, together with simulation resul8.

Index Terms-moment of inertia, mass, center of mass, identi-
fication experiment, dynamics model, natural oscillation, torque
control

I. INTRODUCTION

A full dynamics control of a robot manipulator can only
be achieved with accurate information on the manipulator's
dynamics parameters. A very good performance in full dy-
namics simultaneous force and motion control shown in [l]
was achieved because the manipulator dynamics were properly
modeled and identified. The accuracy of dynamics modeling
lies heavily on accurate values of the manipulator's dynamics
parameters, namely, the moments of inertia, mass, and center
of mass. Although some robot manufacturers do provide
information on mass and center of mass parameters l2l, the
moments of inertia are not provided. One possible hesitation
in providing the inertia values by manufacturers is the fact
that at best, they only provide inertia values based on the
type of material used and CAD drawing of the physical
system. However, values derived through this method can
be inadequate because of other factors like gear ratio and
motor inertia, which could offset the true values of the inertia
parameters.

But even if all the dynamics parameters are provided by a
manufacturer, from the point of view of full dynamics control,
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it would be good to verify the accurateness of the given values
especially when the given manipulator has achieved thousands
of hours of operation. Thus, an experimental procedure to
identify the mass, center of mass, and inertia values can be
more appropriate.

This work will propose an experimental procedure in iden-
tifying mass, center of mass, and inertia parameters through
natural oscillation. The experiment sets the manipulator to
achieve a linear second-order system response and its os-
cillation is measured. A well-defined value of the desired
natural oscillation transforms the identification experiment
into an optimization computation. The period of oscillation is
minimized in the mass and center of mass identification with
the manipulator under open-loop torque control. While in the
inertia identification, the square of the period of oscillation
is equal to the proportional gain, with the manipulator under
proportional torque control.

There are several studies in inertia parameter identification
designed to accurately model and control a physical system.
Among such studies include a moment of inertia identification
for mechatronic systems with limited strokes [3] in utilizing
periodic position reference input identification ofinertia based
on the time average of the product of torque reference input
and motor position. This study showed the moment of inertia
error is within *25Vo. On tracking a desired trajectory and
noting the error response, inertia parameters are identified
using adaptive feedback control [4] where angular velocity
tracking are observed and inertia parameters are changed,
while a globally convergent adaptive tracking of angular
velocity is shown in [5]. In other studies, least squares error
in the response is used in inertial and friction parameters
identification for excavator arms [6]. It is also used to identify
inertias of loaded and unloaded rigid bodies for test facilities
[7], and in another experimental set up [8].

Inertias that are dependent on the same joint variables,
and is also referred to as the minimal linear combinations of
the inertia parameters [9], can be combined to form lumped
inertias. This inertia model has been shown even in an earlier
work on a complete mathematical model of a manipulator [10].
In most cases lumped inertias, instead of individual inertias,
are identified. This is because lumped inertias are easier to
identify.

A similar work that identified lumped inertias through
natural oscillation is shown in [11]. The shown full dynamics
identification method was the foundation in a successful imple-
mentation of a mobile manipulator [1] performing an aircraft
canopy polishing at a controlled normal force of 10 N. The
biggest challenge in implementing the dynamics identification
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in [11] is its need for a simplified symbolic model in order to

identify the lumped inertias. Deriving the simplified symbolic

model can become very computationally expensive when the

number of degrees of freedom of the manipulator increases.

In addition. the mass and'Center of mass were not identified

and were assumed as given. r

This work differs from [11] in the sense that the identifi-

cation procedure proposed in this work does not require the

simplified symbolic model because the individual inertias are

identified, and not the lumped inertias. The mass and center

of mass are individually identified as well. These two points

comprise the major contributions of this work.

More recent identification procedures of manipulator arm

dynamics include the use of torque data flzl, floating-base

motion dynamics [3], iterative learning [14], neural network

aided identification [15], set membership uncertainty [16],
and simultaneous identification and control [17]. Identification

procedures that are more robot specific include tl8l, tl9l,

l2}l, I2ll. Some examples of identification procedures for

humanoid robot dynamics used neural network [22], and

fuzzy-stochastic functor machine [23]. Recent humanoid robot

modeling and control include fuzzy neural network [24]'
global dynamics [25], and ground interaction control [26].

In most identification procedures the identification experi-

ment is dependent on minimizing the least squares error based

the robot response to a predefined path which excites the

dynamics parameters. The controller used in the experimental
procedures is the same confioller that were used in the actual

robot control. This approach can be at a disadvantage because

characterizing a path that isolates the dynamics contribution

of each parameter can be hard to find. Thus in some cases,

the accurateness of each individual physical parameter values

are at times compromised.

The experimental procedure proposed in this work make

use of an independent controller and is dependent on each

link achieving natural oscillation. The estimated values of

the excited physical parameter can be verified by noting the

change in the period of oscillation based on its predetermined

value. The parameter estimates are adjusted such that the

desired ncrin'l ^r -^'-;;l .o'iiiariu, or a glven lmk is achieved.

This isolates each individual physical parameter estimate to the

system response.

This work will propose an experimental procedure, based

on natural oscillation, to identify the individual moment of

inertia, mass, and center of mass parameters of rigid-body ma-

nipulators. The objective it to make the rigid-body manipulator

achieve linear second-order response such that a desired value

of its natural oscillation is known. When the desired natural

oscillation is reached, the correct parameters are found. This

work is aimed at providing an alternative in dynamics iden-

tification methods that is easily implementable, that identifies

individual dynamics parameters, and with comparably accurate

results. A theorem is presented to support the mathematical

principles behind the experimental procedure together with

experimental results.

Fig. l. Subfigure (a) shows an upright pendulum nrming about point A due

to gravity and an initial displacement from equilibrium position. Subfigure
(b) shows the free body diagram.

II. OVERVIEW

A. Linear Second-Order SYstems

The sum of the kinetic energy K and potential energy P

of an upright pendulum, as shown in Fig' l, consisting of a

slender bar with mass tn and length I is l27l

and is constant, where 1 is the inertia of the slender bar, g is the

gravitational constant, and 0 is the angular displacement from

the vertical axis. Thking the time derivative and assuming small

angular displacements, the above equation can be expressed as

**!s:o (2)
dtz 2l 

-

with constant frequency of oscillation o)2 : mglf2l . The

syst€m in (2) is a linear second-order system similar to a mass-

spring oscillator shown in Fig. 2 which is defined by

(1 "  +k  r :o  (3 )
clt. m

where the frequct,ug o' pgcillation a2 : k I m. The relationship

in (2) shows the frequ3' ey of oscillation being dependent on

the physical characteristic of the pendulum. Thus a different

pendulum with different physical characteristics will give a

different value of the frequency of oscillation. When no torque
given at point A, the only moment acting on the pendulum is

that due to gravity. When an initial displacernent is given, it

will cause the system to respond with angular acceleration and

achieve natural oscillation.
Next we consider an inverted pendulum as shown in Fig. 3.

This time, a torque t1 is given at point A as shown in the
free-body diagram of Subfigure (b). With the torque sent to
the system that is equal to the moment due to gravity, the
inverted pendulum will now "float" against gravity. When
an initial push is given, the inverted pendulum will achieve
angular acceleration such that the effective torque sent to the
system is
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(7)

where fko: ct2. Therefore, the inertia is correctly modeled
when the frequency of oscillation az : kp.

D. Multi-Link Rigid-Body Dynamics : : !

The general case of the multi-linked rigid body dynalrtiis of
a manipulator will be presented. The torque to be sent to each
joint of the robot is computed by taking the kinetic eneigy'K
and potentihl energy P and solving the Lagt'ange'equdtibn of
T : K * P [ 2 8 1  ; ' :  ' r  r

Fig.2. A linear second-order system: spring-mass oscillator.

r (a) , (b)

!ig. f. Subfigure (a) shqws an inverte{ pendulum, Subfigure (b) shows the
free body diagram such that the gravitational compensaiion is sent to the
system all the time which results into a systep that is floating against gravity.

. .  l :
76: I0 + 

lmglsin9, 
(4)

that is, the effective torque seiit ar poim A is the sum of
the given inittal'push'that resulted into an acceleration and
the torque sent to balance off gravity. An oscillation occurs
'because the total enexgy is in the process of being converted
from a purely potential energy to a ptrrely kinetic energy, and
vice versa.

B. Mass and Center of Mass ldentification

A torque control in (4) will equate the torque sent to the
physical system to the torque sent to control it such that,

. .  I  I  .
ra: I6 * izglsin 0 : iu+ ;ngisine (5)

L L

where i denotes the approximation of the actual physical
system. Setting an open-loop control, u : 0, and assuming
small angular displacements that is around *15 degrees, (5)
becomes

.. ml -fiti ^0 + -:1f g0:o (6)

which is a linear second-order system where co2 : (mt -
nri )g l2I. The minimum crr correspond s to ml : rhi.

| :
C, Moment of Inertia ldentification

A proportional gain is set to (5) such.that the iontrol
equation is expressed as u: -k70 where kp:is the propor-
tional gain. Assuming that the, gravitational term was corr€ctly
modeled, (5) can be expressed as a linear second-order svstem

' , ' (8)

such the joint torgug vector is expressed,as ,i , ,i:, , , , r
, 1 . 1 . ,

r :A (q )0+c (q ,Q)+g (q ) . , , : , , ,  . ,  ( g )

The symbol A(q) is the joinrspace inertia matrix, c(q, q) is the
Coriolis and centrifugdl forces vector, g(q) is the giavitational
tefms vector, and ri,Q,q are the joint spaib acieleraiion,
velocity, artd displacement. The' control equatibn ii givenr'as
lzel

u : {d ,  k,(Q - qd) - kp(q- qd) (10)

where ko is the proportional gain, ku is the'derivatiVe gaih,
and the isubscript d denotes':desired value!. iir,aaaititin,to
assuming small displacements' during ideirtifi cation prticediiib,
velocity for each link is assumed'small such'thal Cofiolis
and centrifugal forces are less dorninanticomparbd to the
gtavitatioiral forces, and the inertia matfix.'These assumptions
would lead to a linear-second order system that is equivalent
to the single degree-of-freedom (DOF) case.

In U U, it is shown that the lumped inertia terms found in the
inertia matrix A(q) are the same terms found in Coriolis and
centrifugal forces vector c(q,8). Once all the lumped inertia
terms are identified in A(q), all the inertia terms ar€ already
found.

III. THE PROPOSED DYNAMICS IDENTIFICATION
METHOD

In this section we will show a mathematical proof of
the proposed method to support the claims in this work in
identifying mass, center of mass, and moment of inertia. In
addition, corresp-onding algorithms will be sfown.

A. Mass and Center of Mass Identification.,

Given a physical systern such that each link is influenced by
gravitational force, mass and center of mass ean be'identified
by letting the system achieve natural oscillationrthrough'the
force of gravity. It is ,assurned that the links move at small
angular displacements around *15 degrees away'from zero
gravity. axis. Fricdon contribution is disregarded in this work
and r.vill be.addressed in the future .

d lar l  a r
- l - l _ - - ? .

at l0q1l 0q,- " ' .
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Theorem 1; A multi-link rigid manipulator with revolute
joints is under torque control and is influenced by gravitational
force, Its minimum frequency of oscillation o is achieved
when the estimated physical parameter values in the mathe-
matical model are closest to the values in the physical system.

Proof: Case I. Single Degree-of-Freedom. Eqrpting the
torque between the physical system and the mathematical
model results in

t : t6+s(0) : iu+E(O) , ( l  l )

where the control equation u : 6a - k"(6 - Ot - kp@ - ei.
Setting z =0 results into open-loop control such that

6*s(o) :3(o)  - r .

the natural frequency of oscillation and ko is the proportional
gain.

Proof: Case I. Single Degree-of-Freedom. Equating the
torque between the physical sys0em and the mathematical
model.

r :  16 +8(e) : iu+E(0), (17)

The proportional control is set to u: -kog. and. the rest of
the control terms are set to zero, &u :0 and 0a - 0d: 0a:0.
Because the gravity has no influence or is correctly modeled,
the equation becomes

. . i
0 I  =ko0  :0 .

I
(18)

linear second-order system [30] such(12) This is an undamPed
that,

Because of relatively small angular displacements, (12) can be
considered as an undamped linear second-order system [30]
where

a2 : f(s@) -g(0)). (13)

Because 1 is constant, co is minimum when g(0) : g(0).

Case II. Multiple Degree-of-Freedom. The torques sent
to the physical system and the mathematical model are equal
and can be expressed as,

r  :A(0)6*c(0 ,d)  +s(e)  :  A(e)o+e(0 ,e)  +g(0) .  (14)

With relatively small joint velocities, Coriolis and centrifugal
forces are less dominant and are ignored. With small angular
displacements, gravitational terms can be considered linear.
Setting the control equation u:0 results into

0 + r(e)-1 l(g(e) - E(g))1. (ls)

With the small angular displacement A(0) can be considered
constant. As the correct parameter values are approached,
the system becomes decoupled such that each link can be
independently considered as second-order undamped linear
system [30] where

a2: f (s (o ) -g (0) ) . (16)

The minimum ar is achieved when C(0): E(0). I

B. Moment of Inertia ldentification

Given a physical system with its gravitational model cor-
rectly compensated (or is independent of the gravitational
effect), the inertia parameters can be identified by letting
the system achieve its natural frequency of oscillation. The
inertia'values will be adjusted until the desired frequency
response is achieved. The following corollary follows the
theorem presented above.

Corollary 1; A rigid manipulator under proportional torque
control is not influenced by gravity. The correct values of link
inertia parameters are identified when crl' : kp where al is

"  i -
0r-:  

ikp.
(1e)

When i:1, then kp: a2.

Case II. Multiple Degree-of-Frcedom. The torques sent
to both the physical system and the mathematical model are
equal and expressed as,

c :  A(0)0 *c(9,6) +g(e) :  A(e)u+e(0,e) +E(0).  (20)

Setting the proportional control to u: -kr_O an{ the rest of
the control terms are set to zero, ku :0 and 0a - 0d: 0a:0
With slow velocities the Coriolis and centrifugal terms are less
dominant and can be ignored. And because gravity has no
influence or is correctlv modeled.

d +.n (e)-14(g)kpo : 0. (2r)

As the system approaches the correct parameter values, it
becomes decoupled such that each link can be independently
considered as second-order undamped linear system [30]
where

a2: A(0)-ta1e;no. (22)

The case of A(e) : A(0) results in @2 :kp. I

C. The Algorithm

The algorithm for identifying mass, center of mass, and
moment of inertia through natural oscillation is presented in
this subsection. For mass and center of mass. the identification
procedure is the following.

1) Select initially large values for the mass fr, and center
of mass I to initialize the dynamics parameters of the
multi-link rigid body.

2) For each of the joint, send the torque c corresponding to
the Coriolis and centrifugal forces and the gravitational
terms.

3) Let each link oscillate from a predefined initial displace-
ment, to help create consistency of results. The system
will start to oscillate at a certain frequency co.

4) Measure the frequency of oscillation or.

13
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3-DOF

Fig. 4. The frame assignment for I-DOF,2-DOF, and 3-DOF manipulators.

5) Adjust the values of the dynamics parameters fi, and 7
to minimize the frequency of oscillation ar.

6) Repeat Steps 2-5 until the minimum frequency of oscil-
lation ar is found such that its corresponding fit, and f
are the best estimates.

In identifying moments of inenia i, the same algorithm
as stated above will be used, except that f is the unknown
parameter instead of ft and L Then instead of minimizing
o, the corresponding objective value of the frequency of
oscillation will be a2 : kp.

The large values of the initial dynamics parameters are
recommended to have an initially large solution space to
explore. A predefined initial displacement is used to create
consistent results in measuring the frequency of oscillation.
The predefined value of this initial displacement should be
about *15 degrees and with alternating opposite signs on
consecutive joints. This setup will help minimize the displace-
ment for each joint such that the assumption on linearity of
the manipulator response will hold. In addition, this will also
minimize the contribution of Coriolis and centrifugal forces
such that the accumulated displacement of each joint remains
small.

To measure the frequency of oscillation crr, normally the
number of periods of oscillation is counted within a predefined

number of update cycles. An incremental step is performed

within the search space of the dynamics parameters to find

the combination of values that correspond to the desired al.
The dimension of the search space increases as the number of
dynamics parameters to be identified increases. Incrementally
changing the values of the dynamic parameters and measuring

the corresponding frequency of oscillation are repeatedly per-

formed. For higher degrees of freedom, it is highly possible

that the identified parameters will result in a combination of
possible range of values. Each of the possible combinations
can be checked later against the robot response in the actual
manipulator control.

) 

,-*

IV. RESULTS AND ANALYSIS

Simulations are performed to test the proposed algorithm
in identifying the dynamics parameters of l-,2-, and 3-DOFs
manipulators. Open dynamics engine (ODE), an OpenGL
progam integrated with C code, is used as the simulation
platform. This simulation platform requires the actual phys-
ical model for the system to move in a virtual world. The
dynamics parameters are then provided to create a model for
the simulation. Then the conesponding torques are sent to the
joints using estimated dynarnics parameter values.

In this section, the range of estimated values corresponding
to the desired at will be presented for each of the simulated
manipulator. The frame assignment is shown in Fig 4. The
simplified symbolic dynamics model of l-,2-, and 3-DOFs
manipulators shown here are expressed in terms of masses and
center, including the inertias. Corresponding mass factors are
used to vary the possible range of values for the mass, center
of mass, and inertia parameters. The following symbol sim-
plifications are used Si...n: sin(lf Q) and Cr...n: cos(lf 0;).

A. One Degree of Freedom

The simplest case of I-DOF is shown to test the sensitivity
of the system to numerical errors. Given a mass rzr and link
length L, a mass factor fm1 and fm2 are multiplied to the
gravitational and inertial terms, respectively.

It fm, ImrLz' )
Bt : fru i mlgL 51.

(23)

An initial 15 degrees displacement was used to perturb the
system and let it achieve natural oscillation. The results are
shown in Table I for the mass and center of mass and Table II
for the moment of inertia.

TABLE I
MAss AND CENTER OF MASS IDENTIFICATION FOR 1-DOF

1.020
1.010
1.005
1.004
l 003
t.oo2
1.001
1.000
0.999

8.7
6.9
5 .8
5.5
5 . 1
4.8
4 )
4 .1

(falls under gravity)

The correct values of the dynamics parameters correspond
to fmy: fmz: 1.00. Table I shows consistently that as
the estimated parameters start from large values and de-
crease towards the correct values, the frequency of oscillation
decreases. And at 0.001 difference of the mass factor, a
difference in the frequency of oscillation is achieved. The
minimum frequency of oscillation is shown to be 4.1 periods
per 5,000 update cycles. A mass factor f 6:0.999 will cause
the system to fall due to gravitational force. Table Il shows
consistently that as the mass factor increases, that is, the inertia
estimates become larger than the actual values, the frequency
of oscillation increases. It can be safely assumed that the

14



difference in the frequency of oscillation is more elaborate
when the mass factor changes to around 5Vo.ltis also possible

to increase the number of sampling updates in order to make
more elaborate differences in the frequency of oscillation. An

analytical sensitivity analysis on the mass and center of mass

identification effor as compared to the inertia identification
error will be shown after this section.

B. Two Degrees of Freedom ,

The symbolic form of the components of inertia A(0),

Coriolis and centrifugal forces c(9, 0) and gravitational terms
g(0) of the 2-DOFs manipulator is shown in (24).

TABLE III
MAss AND CENTER OF MASS IDENTIFICATION FOR 2-DOFS

at

fmt' . f*z Link I, Link 2

5.4
4.7
4.5
4.5
4.4
r ' , )
4.0
3.6

( falls under gravity )

TABLE ry
INERTIA IDENTIFICATION FOR 2-DOFS

at

f^2, f^t Link 1. Link 2

TABLE II
INERTTA IDENTIFICATIoN FoR 1-DOF

f*z Link 1

1.00
l . 0 1
t.o2
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1 . 1 0

35.50
35.57
36.00
36.00
36.10
36.50
36.62
36.60
37.00
37.00
37. t3

1.005
1.004
1.003
1.002
1.001
1.000
o.999
0.998

1.01
t.o2
1.03
t.o4
1.05
1.06
1.07
1.08
1.09
1 t0

35.61
36.00
36.00
36.14
36.50
36.50
36.66
37.00
37.00
37.17

An fmalmll? + fmtmzl](t +Cz)
Atz : A21 : fm3m2t?11+ lC21
Azz : fm3\m2L2
cr -fm3lm2Lz4z(24t*qz)Sz

c2 : frylm2LzS2Ql
sr : f  ̂ t (L*t -f  m2)Lgs1* fm2lm2LgSp

(24)

Ez : fm2)m2LgSp

In the symbolic model shown, the mathematical model

of the inertias were simplified such that only the principal

moment of inertia about the joint axis is considered. The

other two principal moments of inertia and all the Broducts of

inertia were assumed zero. However, in the simulation model

this is not true. as the ODE simulation mimics the real-world
physical system these values can only be assigned relatively

small values and not completely zeros.
For each of the lumped inertia parameters, mass factors /z 1,

fmz, fmz, and fma are used. Note that the dynamics model

can be identified:jndividually without the lumped symbolic

model. However, the value of the lumped model only served

to show the limits on the products of the identified parameters.

In a sense it is the lumped model that is identified such that

any values of m1 and L would suffice to model the dynamics
parameters as long as the product of their values corresponding
to the actual physical model and is correct to within a desired

accuracy. This precision defines the range ofpossible identified

values.
Table III shows the experimental results for 5900 updates

of a two degrees of freedom robot with varying mass factors

f6 and f*2.The frequency of oscillation is recorded for the

different values of the mass factors. The robot falls under the

influence of gravity when the mass factors are 0.002 below the

assigned physical mass factor of 1.0. The minimum frequency
of oscillation applies when all mass factors are 0.001 below

1.0. The frequencies of oscillations for both links decreased
accordingly as estimated values decreased towards the actual
physical values.

Table IV shows the experimental results for 20000 updates
of a two degrees of freedom robot with two mass factors fm3
and fma being varied. The frequency of osr:illation is recorded
for the different values of the mass factors. A mass factor of
1.0 corresponds to the correct natural frequency a2 : kp. The
frequencies of oscillations for both links increased accordingly
as the mass factor were increased. Again around 5Vo difference
in the mass factor created an elaborate difference in the
recorded period of oscillation.

15,
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A n :

A n :

.f ry * (* t * 4m2 * 7 m3) I? + f m5 (mz I 2m3) L2 c2
+ fmam3L2(Q+Czz)

t2, : 1m6 \ (mz * 4mz)L2 + f m5l(m2 + 2ry) I? c2
* fmalm3L2(2Cz*Czz) t

A31 : f ma fm3L2 (Z + 3Ct * 3Czz)
A32: fmafm3L2(2+3q)

f*sl@z + 4ry) L2 * f mq3mtL2 cz

fmalryL2
- f ms L @z * 2ry) L2 Q2(2h + 4z) sz

- J ma )ryl? (42 Q4 r * 2Q2 i q) s3
+ @z+ Qt)Qh I q2+ 4z)szz)

"f*si@z+2ry)L24ls2
-t f ma lry L2 (- qz (zq, * 2Qz * qz) s t

*4?szt)
7m4 )ryr2 ((4 r * 4z)z sz + 47szz)
. fq i@r *2(m2*ry))Lgs1

+ fm2|(m2-t2m3)LgSp
t fm3)m3LgSp3

f*zi@z*2m3)Lgsp

TABLE V
MAss AND CENTER oF MAss IDENTIFICATIoN FoR 3.DoFs

fm1, fm2, fm3
^

An
Azz
Azz
An

c l

1.005
l.()ol
1.003
1.002
1.00r
1.000
o.999
0.998

4.O
3.9
3.9
5 - t

3.2
3 .1
3.0

(falls under gravity)

c Z :

g 2 :

* fm3)m3LgSp3
g3 : fm3)m3LgSp3

(2s)

C. Three Degrees of Freedom

The symbolic full dynamics model of a 3-DOFs is shown
in (25). The link masses are mr,m2,andm3 for l inks I to 3
and have equal link lengths of I-

Mass factors fmt, fmz, and fm3 are used for the mass and
center of mass identification, while mass factors from fma to
fm7 are used for the lumped inertia parameters identification.
It is assumed that the principal inertias of each link about the
joint is dominant, such that the other principal inertias and the
products of inertia are assumed zero. The inertias are expressed
as masses and centers of mass. The values of fm1 to fm3 are
varied to determine the system response at minimum a;, while
the values of fma to f-m7 are varied to determine the system
response in finding a2 : kp.

Tables V and VI show the experimental response of the 3-
DOF manipulator. In the experiment, the natural oscillation is
achieved at slow speed and the entire system moves in unison.
This is helpful but not necessary, in achieving well-defined
natural oscillations. The inertias were also expressed in terms
of masses and centers of mass, and the dominant parameters
are gravitational and not the Coriolis and centrifugal forces.

As in the previous results, there is a distinctive decrease of
the period of oscillation as the mass factors fm1, fm2, and
fm3 decrease towards the correct value. At mass factors of
0.998 the system fell under gravity. The minimum frequency
of oscillation is achieved at a mass factor value of 0.999.
The system can be considered as having a tolerance limit of
+0.001. Such tolerance value is also demonstrated in mass

TABLE VI
INERTIA IDENTTFtcATtoN FoR 3-DOFs

at
fma,f m5,f m6Jm7 Link I, Link 2,Lir/r- 3

1 .01
r.o2
1.03
1.04
1.05
1.06
l 0 7
1.08
1.09
1 . 1 0

35.62
36.00
36.00
36.t4
36.50
36.50
36.66
3't.N
37.00
37.18

factor values of 1.004 and 1.003 where the corresponding
periods remain the same. For practical purposes, it can be
stated that the tolerance value is at i0.002. In the inertia
identification, there is a distinctive difference in the period
of oscillation when the mass factors f mq, -f ms, f m6, and f m7
differ by around 5Vo. Again, increasing the sampling update
cycles can make the difference in the frequency of oscillations
more elaborate for the same mass factor range.

The initial values were purposely chosen to be not too
far from the real values (at a maximum of l\Vo) to show
the sensitivity of the system to numerical errors when the
estimated values are getting closer to the physical values. This
is important because this will show the degree of precision
in the proposed method's estimation ability. Because the
proposed method converts the identification procedure into an
optimization computation, convergence from a given set of
initial values will be dependent on the optimization procedure
used. One optimization procedure that may be used is the
probabilistic gradient descent method that will perform a
predefined number of random walks upon convergence. In this
way, the computation can increase the probability of getting
out of local minima.

In most cases, it is hard to quantify the acceptable tolerance
values of an identified parameter because, to the best of
our knowledge, there is no such quantification study. The
correctness of the identified value is only checked through the
accuracy of the robot response. But even with the quantifica_
tion of the accuracy of robot response, there is no set standard
on how much is the tolerance limit to be considered ,.best

performance" given set parameters as speed, task requirement,
and load. Thus the success of most dynamics identification
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method normally is based on response of the manipulator
where the identification is being implemented. And this is
dependent on what type of task the manipulator is required
to perform, and is generally not applicable to all systems.

V. SpNstrwtrv ANaI-vsIs r

Identifying the inertia parameters, together with the mass
and center of mass, can create different errors in the torque
response due to inaccuracy in.the identified parameters. This
section will show sensitivity to parameter errors in terms of
gravitational terms as compared to inertial terms, and how
both terms affect the error in torques. For simplify, sensitivity
analysis is performed for I-DOF manipulator.

Given a computed torque control where the dynamics pa-
rameters are correctly modeled under proportional control is
expressed as

t : - i  k r e g * f i (26)

where ee - 0a- 0. Then, given a perturbation in the gravi-
tational model, 69, the resulting perturbed computed torque
will be

r + 6rs - -i kre6 + (g+ 6s) (27)

such that, the torque perturbation divided by the computed
torque is

future direction of this work is to implement the method on
a physical robot manipulator. where the friction parameters
influence the results. The ultimate goal of this experimental
procedure is to implement it on a humanoid robot moving in
a full-dynamics whole-body control [31].
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