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Abstract-This work will present metaheuristic computations,
namely, probabilistic artificial neural network, simulated anneal-
ing, and modified genetic algorithm in finding the minimum-
norm-residual solution to linear systems of equations. By demon-
strating a set of input parameters, the objective function, and the
expected results solutions are computed for determined, overde-
termined, and underdetermined linear systems. In addition, this
work will present a version of genetic algorithm modified in
terms of reproduction and mutation. In this modification, every
reproduction cycle is performed by matching each individual with
the rest of the individuals in the population. Further, the offspring
chromosomes result from crossover of parent chromosomes
without mutation. The selection process only selects the best fit
individuals in the population. Mutation is only performed when
the desired level of fitness cannot be achieved, and all the possible
chromosome combinations were already exhausted. Experimental
results for randorrly generated matrices with increasing matrix
sizes will be presented and analyzed. It will be the basis in
modeling and identifying the dynamics parameters of a humanoid
robot through response optimization at excitatory motions.

Index Tenns-metaheuristic computation, probabilistic arti-
ficial neural network, simulated annealing, modified genetic
algorithm, linear systems of equations

I. INTRODUCTION

Metaheuristic computations are gaining wide acceptance
through many fields of specialization because of their ability to
find near-optimum solutions to Fbemingly unsolved problems
using traditional mathematical 'techniques. Because of this,
many computational applicatiorn,found workable solutions
which would have been almost impossible to find or imprac-
tical to implement using non-heuristic approaches. This work
will present three metaheuristic methods, namely, probabilistic
artificial neural network, simulated annealing, and modified
genetic algorithm. All three methods will be used to solve the
same set of randomly generated inputs to linear systems of
equations and their computational performance are compared.
Probabilistic artificial neural network is chosen because if its
faster computation especially at more complicated systems
compared to the other two methods, simulated annealing
because of its ease of implementation, and genetic algorithm
because of its high rate of convergence.
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Artificial neural network (ANN) has addressed a wide
range of real-world problems including autoregressive moving-
average model model parameter estimation [1], identification
of linear discrete time systems [2], augmentation.of controller
for underwater vehicles [3],2D pattern recognition problems

[4], and linear systems of equations [5] including time-varying
systems [6] and linear and quadratic programming [7]. The
ANN results presented here varies from [5] in that a prob-
abilistic approach is used when ANN does not converge to
the desired minimum residual value when a preset number
of iterations is reached. Probabilistic neural networks appli-
cations include pattern [8] and power quality classification

[9], volume segmentation in brain MR images [10], face
recognitiorVdecision [11], allocation of power loads [12], and
freeway incident detection [13].

Computational applications of genetic algorithm (GA) in-
clude traffic engineering optimization [14],leaming and struc-
turing of afiificial neural network [5], linear array synthesis
problem [16], optimizing reactive power planning [17], opti-
mizing piecewise linear function [18], solving linear bilevel
programming [19], and automated linear modeling[20]. In
this work, when the level of fitness has not reached the
desired value but all possible chromosome combinations are
exhausted, a probabilistic mutation process is performed"
Some applications in probabilistic approach to genetic algo-
rithm include alarm processing [21], optimal scheduling [22],
tagging model [23], and in embedded systems [24].

Simulated annealing (SA) was first used to optimize NP-
complete (nondeterministic polynomial time complete) prob-
lems including the physical design of computers such as
partitioning, component placement, and wiring of electronic
systems [25]. Then simulated annealing found many wide-
ranging area of applications that expanded the usefulness of
this optimization technique. Among many of these applications
include transmission system planning [26], combination with
genetic algorithm to solve some NP-hard problems [2'll, at-
mospheric correction of hyperspectral data over dark surfaces

[28], EEG source localization [29], flow model application

[30], and bioclustering of gene expression.data [31]. Swarm
behavior that is hybrid with simulated annealing is shown in

1321.
The contribution of this work lies in the analysis of the

convergence and computational complexity of each of the
methods presented, together with the comparison between
these methods based on the analysis presented. A set of
inputs are specified together with the desired outputs. Then the
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objective function is defined as the norm of the residual such
that the iteration process will proceed to minimize it. Random
vectors and matrices are generated and the corresponding
solutions are computed. The sizes of the matrices are varied
from square to non-squarc matrices, with increasing row or
column, in order to deal with determined, overdetermined, nd
underdetermined linear systems of equations. The results are
compared against QR factorization.

Another contribution of this work is the modification of
genetic algorithm. This modification affects the selection,
reproduction, and mutation process of the usual method of
computing genetic algorithm. Normally, reproduction is per-
formed from selected parents until the desired new population
size is achieved. The derived offspring chromosomes are the
results of crossover as well as mutation. Then the best fit
individual are more likely to get selected in the selection
process.

In the modified genetic algorithm presented in this work,
a single reproduction cycle is performed by matching each
individual to the rest of the population. The chromosomes
of the resulting offsprings are derived via crossover from the
chromosomes of both parents, without mutation. The resulting
population after one reproductive cycle, that is, parents plus
offsprings, are ranked according to their fitness level. The best
fit individuals are selected and the rest of the individuals are
discarded. Thus there is a possibility of chromosome homo-
geneity, such that no further advancement of the population
will occur after a number of reproduction processes. When
chromosome homogeneity approaches, mutation is introduced
to create the necessary diversification of the chromosome
combination in order to attain the desired population advance-
ment. No comparison is performed between the unmodified
genetic algorithm and the modified one, because this is not
within the scope of this work. Although, it may be more
logical to do this comparison, this work only compares the
modified genetic algorithm against artificial neural network
and simulated annealing.

Section II presents an overview of the three methods dis-
cussed. This is followed by the detailed discussion for each of
the methods. Probabilistic artificial neural network is presented
in Section III, modified genetic algorithm in Section IV, and
simulated annealing in Section V. Results are shown in Section
VI and are analyzed. Finally, Section VII gives the summary
and conclusion of this work.

II. OVERVIEW

An overview of each of the methods presented in this work
is shown in this section to give an introductory discussion
before showing the full details of implementation. In solv-
ing the Ax: b problem, the metaheuristic approach is to
iteratively compute for the unknown value of x such that
resulting computed value for b is close to its desired value
by a minimum-residual norm.

A. Overview of Probabilistic Artificial Neural Network

Artificial neural network, being a function mapping compu-
tational approach, does not give too much emphasis on how

the network is implemented but rather on getting the desired
ouQut from the given set of inputs. In general, the neural
network implementation can be treated as a black box.

This work will try to move away from the traditional
computational approach of the ANN by aftempting to find
the appropriate values of the weights, which is the unknown
vector x, in order to arrive at a desired solution of Ax : b.
Matrix A and the desired output vector b will remain constant
all throughout the computation. This method will use back-
propagation technique in ANN to adjust the weights values
x at every computational cycle. The idea therefore is to find
the appropriate stepping strategy such that when the values
of the weights are adjusted at every iteration, the resulting
computation move closer to the desired output. The correct
values of the weights x are declared to have found when the
computed value of Ax is close enough to the desired input
value b within the required tolerance r.

A maximum number of iterations is set such that if the
desired s is not achieved up to this value, a random walk
from the final output is performed to start a new iteration. The
random walk is the method of escaping from a local minimum
in the ANN computation presented in this work.

B. Overview of Modified Genetic Algorithm

The same Ax: b problem is considered using genetic
algorithm. An added input information on the number of
individuals p in the initial population is required. The number
of individuals in the population will be responsible for the re-
productive process in order to find the individual whose chro-
mosome combination results in the minimum (or maximum)
fitness function at the required tolerance e. The technique
will compute the resulting floating point numbers directly by
searching the solution space through possible floating point
chromosome combinations for every reproduction, mutation.
and selection process.

The GA presented in this work is modified from the original
GA in that it deals with floating point numbers instead of
binary numbers in composing its chromosome combinations.
In addition, parents are matched in such a way that each
individual in the population will have a chance at pairing with
the rest of the population. This is performed at every mating
cycle. Thus at the end of a mating cycle, all the possible
chromosome combinations for the current population were
already exhaustively searched, and the most fit individuals
were identified. Further mating within the population will not
yield any better fit individual. This mating strategy is an added
novelty to the modified GA presented in this work.

If no solution was found, there is therefore a need to alter
the chromosome combinations of the current population. This
is achieved by introducing random mutation to the most fit
p individuals in the population. The rest of the individuals
will be discarded. A new mating cycle is then performed with
chromosome combinations mutated within the vicinity of the
best fit individual's chromosome combination. The described
process will be repeated until the best fit individual or the
solution is found.

The individual that is the solution has a chromosome
combination with a corresponding fitness function that lies
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Fig. 1. The artificial neural network model that is used to solve for the
constants of the line equation y -mx+b. The output y; is computed given
the input .t and I, and the initial values of m and b. At every iteration ft,
the wiights are updated such that nf+r : mk + bn, bk+r : bl + Lb *terc'
Ltn : rlxi(yai -yot) and M -- 

n1ai - yo).

within the required value t. In the same way as probabilistic
ANN, a critical part in the computation of modified GA is the
selection of the appropriate stepping strategy that will result
in the advancement of the population.

C. Overview of Simulated Annealing

Simulated Annealing is based on the metallurgical concept
of heating followed by slow cooling of metal allowing its
lattice structure to rearrange and relieve stress, resulting into a
more ductile material. The physical model of slowly decreas-
ing temperafure provides a way of randomly searching through
the solution space, allowing a sacrifice of moving away from
a seemingly better solution in order to move closer to the
global optimum. This physical model provides a framework
for optimization of more complex systems.

This optimization method will attempt to find the unknown
vector x, that will result into the closest value possible to
the desired solution of Ax: b. The computation will step
randomly in the solution space and compare the value of
the objective function, which is the norm of the residual
value. If the new objective function moves closer to the
final solution, then the new solution will replace the current
solution. However, if the new solution results into a higher
norm of the residual value, this is not always discarded.
In fact, this is checked against the the Metropolis criterion

[33] such that the higher the temperature value, the higher
is the probability of acceptance of the new solution with the
higher residual value, as the computation searches through the
solution space for the global optimum.

The Metropolis criterion which is compared against a ran-
dom number creates a decision mechanism for the acceptance
or non-acceptance of the new solution with a higher residual
value than the current solution. This allows the local sacrifice
of moving away from a local minimum for a future gain of
moving towards the global solution.

III. PROBABILISTIC ARTIFICIAL NEURAL
NETWORK

To present the method of solution discussed in this work, we
first present the simple problem of solving for the unknowns
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Fig. 2. Tlvo parents of distinct chromosome combination p4,b;j and

{mi+r,bi+rl will result into two offsprings of chromosomes {rc+r,bi} and

{^i,bi+r}. This is performed by swapping the z's and the b's from both
parents one at a time as shown in subfigures (a) and (b).

for the equation of a line y:mx+b. This linear equation
has a set of paired inputs {x1,y1},{*z,yz},{rz,yt},...{xn,yn}
where n is the sample size. The desired values y4 is the input
vector y. The weights to be adjusted are the corresponding m
and b, such that the i-th component of the actual computed
value yo is yai : flm;* b. The values of the m and b ate adjusted
for every iteration ft of paired input {x;,y7;}

where tl is the learning rate. The subscript i denotes the i-th
component of the corresponding vector. A solution is found
when the norm I ly7 - y, I | < e. A diagram of the probabilistic
ANN model is shown in Fig. 1.

The same approach is extended to the Ax: b problem with
inputs A e lR-'n and b € IR-. The vector x e lR' is unknown
and is computed. The desired vector b7 is the same as b,
while the vector b, is computed. The l-th component of bo is
determined by

n
, s !
O a i :  / a i i x i

; - l

where l- 1,...,m. At each ft-th iteration the value of x; is
updated by

#,*' : {+qaa(ua,- bL). (3)

A solution is declared found when the norm llbT -brll < e .
The total number of floating-point operations (flops) for a
given m sample size is nll(2n-l)m+3n1, where n; is the
number of iterations performed. The first term inside the
square brackets is due to the multiplication of Ax, the second
term is due to the weights update.

In this work, flop count as defined in [34] is used. One
flop is counted for each addition, substraction, multiplication,
division, or square root. Counting of flops is a preferred ap-
proach because it is more accurate and platform independent,
as compared to recording of computer processing time.

( l )Vlr.' : V)r .'t(v'' - v"'li)

(2)



IV. MODIFIED GENETIC ALGORITHM

As an initial approach, the genetic algorithm is used to solve
for the simple equation of a line y : mx+ b in order to test its
effectiveness in solving a linear equation. A set of input data
points x,y € lR' is specified by the user where n is the size
of the input data. An additional information on the numb& of
individuals p in a population is user-defined and is even.

A. Method of Reproduction

From the initial population, iterative reproduction, mutation,
and selection are performed to search for the individual
with the best set of chromosome combination in order to
find a well-suited solution. Let the input y be the desired
output yd, and the computed value yo be the actual out-
put defined as yd : mx+b. Given a user-defined paired
inputs {r1 ,!r} , {x2,y2} , . . .{x,,yn} and populatio n size p, the
optimization problem is to search for the best individual
i : l, . . . , p, aftet iterative reproduction, mutation, and selec_
tion where

Yai :  mix*  b i  (4)

such that the corresponding error llya_ y,)l is minimized.
An individual's chromosome will be composed of m and b.

During reproduction, two parents of distinct chromosomes will
produce two offsprings whose chromosomes result from the
combination of chromosomes from both parents. Thus given
two parents with chromosomes {m;,Dt} and {mi*1,b;.r1},the
resulting two offsprings will have chromosomes {mi+r,b;} and
{*i,bi+t} as shown in Fig. 2. Consequently for exactly the
same set of parents, the resulting set of two offsprings will
have identical chromosomes as another set of two offsprings
from the same parents.

The idea in this method of genetic algorithm is to find two
parents of distinct chromosome combination who will produce
two offsprings that will result into an advancement of the
population, that is towards an individual whose chromosome
combination has the optimum solution. Consequently, parents
with identical :hromosomes will not result in an advancement.
And parents vith very close relations will result into an
incremental a rlvancement.

B. Matching oJ" Parents

The method of pairing for the reproductive process is
performed by matching two parents in an "n choose k"
combination for all p individuals, that is,

't: (i): xL" (s)
such that each has a chance of pairing with the rest of the
group as shown in Fig. 3. This type of reproductive process
allorvs identification of all the possible combinations of the
chromosomes within the population in just one iteration. This
is one of the novel contributions of this work.

The resulting number of individuals in the population after
each reproductive process is np: ZCI + p, because each

Fig . 3 . The " n choose k" method of pairing two parents for the reproduction
process such that each individual will have a chance of matchins with the
rest of the group. The index i : 1,2, . . . , p.

mating of parents will result into two offsprings, added by
the number of p parents.

Two other methods of parent-matching were considered.
One of the methods considered was random choice of partners.
Random individual was picked and was paired with another
randomly picked individual. Only one matching per individual
was allowed for each reproduction process. Convergence is
very slow because the probabilities of matching each individ-
ual to the rest of the group is much more limited compared
to the "n choose k" method. In most cases, the maximum
allowable iterations was already reached and no solution was
found.

The other method tested was picking out the most fit
individual to breed the rest of the population. This method also
has very slow convergence because the resulting chromosome
combination is limited to the best fit individual at the time of
reproduction.In most cases, the best fit individual may become
the bottleneck for the advancement of the population, instead
of the catalyst for advancement.

C. Selection and Mutation

The fitness function for each l-th individual was calculated
using l lyn, -yall where ya; was computed using Eq. 4. The
resulling n7. individuals are sorted from the lowest to highest
fitness function value, lowest being the best fit individual of
the population. The top p individuals, parents included, are
then chosen as new individuals in the population for the next
reproduction process. The rest of the individuals are discarded.
The issue faced by this method, especially when the best
fit individual comes closer to the solution is the problem of
homogeneity of the chromosome combination. This means that
the values of the n's and the b's for different individuals are
very close to each other. The reproductive process would be
similar to the reproduction between very close relatives in the
population, or in some cases was already a self-reproduction.
In these cases, the advancement of the population is very small,
or remains constant.

To avoid homogeneity in the population, mutation is per-
formed once the top p individuals are chosen. These individu-
als are mutated by using the best fit individual's chromosome
as the base and modifying it by taking random walks from
this chromosome. Eventually, the resulting p individuals have
randomly distributed chromosomes from the best fit individ-
ual's chromosomes. This is another novel contribution of this
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work, in terms of the modification of genetic algorithm. The

i-th individual is mutated at each ft-th iteration cycle by

4*t:4*q rand0 llva-v|,l l  (6)

where rand0 is random number generator within the range

[-l, l ], and 4 is the step size.
Extending the same procedure to Ax : b, the user inputs

now are A € lR'"' and b e 1R', and x € lR' is unknown. That

is, the input b is the desired b7 and the the actual output bo
is computed for each i-th individual in the population by

bo; : AX; (7)

such that the fitness function llba-br;ll is minimized. The
rest of the processes are identical to the equation of the line

described above, except for the reproduction process where
the combination of the chromosomes increased.

During the Ax: b reproductive process, there are n chromo-
somes that will be swapped. The total number of individuals
after one reproductive cycle is n*:Yt=zW!,*p. Thus the
total number of flops after one iteration is approximately
npl(2n-l)m*n(2m+5)]. The first term inside the square
brackets is due to the multiplication of Ax, and the second
term is due to the computation of the fitness function and the
update of x. The swapping of chromosomes is not counted as
a flop. Compared to probabilistic ANN, the flops for modified
GA has almost the same terms, except that the terms in the
square brackets are multipliedby np, instead of n;.

V. SIMULATED ANNEALING

The same Ax: b problem with randomly generated matrix
A and vector b is considered using SA. To solve for the next
value of x, a random step is taken from its current or actual
value xo, to get a new value xr,

xn:xa*tl randO (8)

where rand0 is a pseudo random number generator and 4
is the step size. The function of the energy of the system is
defined as AE : l lba -b,l l - l lba -b,l l such that the new
x, replaces xo when AE is negative. When AE"is positive

this means that the random step resulted in an output value
bn: Ax, that moves farther away from the solution. This
new output value is not thrown away immediately, instead a
probability function using the Metropolis criterion,

P(AE) : exP(-LE lkPT) (9)

where I is the "temperature" of the material and fts is the
temperature factor, decides whether xu can replace xo. This is
what is referred to as a local sacrifice for a future global gain.

This is SA's mechanism of escaping local minima. A pseudo
random number generator is used such that when P(AE) >
rand0, x, replaces xo, otherwise xo remains and a new random
step is performed to find a new xn.

The total number of flops used in SA is n;lI2n(m + t)l

where n; is the number of iterations. This is of the same order
as that of probabilistic ANN which is Ofun\. Due to the size

Ra te  o f  Conve rgence

Fig. 4. The rate of convergence of Ax: b for the corresponding matrix

sizes shown, computed through probabilistic ANN, modified GA' and SA.

For each matrix size,.100 matrices were randomly generated and computed

for all methods. QR factorization always converged and is not shown.

,1,

of the matrices considered that is not too large, w€7c&rl roughly

approximate that the number of flops for the SA is six times

the number of flops for the probabilistic'ANN for the same

number of iterations.

VI. RESULTS AND ANALYSIS

The linear equation Ax: b .ig;splved for randomJy geprated

inputs of matrix A and vectdi b, and the uirknowir vector x

is computed. The same random inputs are used for the thr€e

different metaheuristic methods, nimely, probabilistib- Af"lN,

modified GA, and SA. These results are benchmarked against

QR factorization. For ran$9m square matrices the matrix siees

a re  3  x  3 ,4x4 ,5x5 ,€Sr  6 ,8  x  8 ,  and  10  x  10 .  To  show the

case for non-square *atH""t, the column or row size is fixed
at 5 while the row or column size is varied from 3 to 10,
using the same increment as the square matrices case. This

experimental setup will consider determined, underdetermined
and overdetermined linear systems with varying matrix sizes.
For each matrix size, 100 randomly generated matrices and
vectors are used. The random walks for probabilistic ANN is

set at 10 such that the maximum number of iterations for non-
convergence is 10000. This is the same maximum number of
iterations for SA. For the modified GA, the maximum number
of iterations is set at 1900 which is multiplied by the number
of individuals in the population p. Initially p is set at 10.

A. Rate of Convergence

From the 100 randomly generated matrix A and vector
b, the rate of convergence for different square matrix sizes
computed through probabilistic ANN, modified GA, and SA
are compared against QR factorization and is shown in Fig. 4.
A method of computation is said to have successfully found
a solution when the 2-norm of the error is less than the
desired s : 0.01.

For the metaheuristic computations their accuracy in finding
a solution to determined linear system of equations is always
less than 1007o. But QR factorization always converged and is
not shown in the figure. SA has the highest rate of convergence
at around 967o for a 3 x 3 matrix size but has zero rate
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lig 6 The average number of floating-point operations (flops) for proba_
bilistic ANN, modified GA, and SA corresponding ro each of thl matrii sizes
shown.

of convergence for matrix sizes 8 x 8 and l0 ^ 10. The
maximum rate of convergence for modified GA is at 90Vo
for a 3 x 3 matrix size and at 657o for a l0 x l0 matrix size.
The probabilistic ANN converges at a lower rate at jSVo for
a 3 x 3 matrix size and at 52Vo for a 10 x l0 matrix size.
Both probabilistic ANN and modified GA, converged even at
matrix size 10 x 10, which showed their ability to handle more
complicated systems. Their difference in convergence rate is
around l2%o and almost constant throughout the different ma-
trix sizes, with modified GA having the higher rate of success.
SA on the other hand is highly recommended for much simpler
systems but its rate of convergence decreases significantly as
complexity of the system being handled increases. Of the three
metaheuristic computations, the modified GA showed superior
performance and is consistent all throughout the different
matrix sizes. Note that the modified GA exhaustively searcheci
through all the possible chromosome combination from rhc
random chromosomes of the initial population.

The norm of error graph is shown in Fig. 5. This has an
inverse relationship with the rate of convergence. The sh,-wn
effor nonn is the average value for the corresponding rnr:f hod
of computation shown, including the non-convergent ceses. SA
has the highest effor nonn of the three methods shown because
of its non-convergence on matrix sizes 8 x 8 ar.,] 10 x 10. Note

Per tu rba t ions  o f  5x5  Mat r ix  in  ANN
I  Per<ent  o f  Suc(ess
I  FLOPS counvn06)

that for matrix size 8 x 8, probabilistic ANN, which has 60Zo
rate of convergence, is close to the error norm of SA, which
has zero convergence. This result seemed anomalous at the
first glance. However, recall that an error norm of less than
tolerance e :0.01, is considered convergent. In the case of
probabilistic ANN, this simply means that the nonconvergent
cases of 4OVo has higher error norns that pulled the 6OVo
convergent cases to its final average value of around 0.077.
For SA, the final average error nonn of around 0.081 is a
representative of all the nonconvergent cases higher than 0.01.

Computations using modified GA has lower error norm
than probabilistic ANN because of the former's higher rate
of convergence. This is consistent through all the matrices
considered. The difference in the error norm between the two
methods slightly increases as the matrix size increases, with
probabilistic ANN having the higher error norn. On the other
hand, QR factorization always converged. Its error norm is
always very small and is not shown in the graph.

The superiority of the modified GA is hampered by the
fact the the number of flops involved in computing is much
higher than probabilistic ANN and SA. The higher compu-
tational expense is inherent to GA. This is more true to the
modified GA presented in this work, because of the exhaustive
search through the pairing of each individual to the rest of
the population. However, this may result into higher rate of
convergence as compared to the unmodified GA. In Fig.6 the
numbers showed GA flops/100 to scale down the values of
flops for GA, and SA is shown at flops/l0. The number of
flops for QR factorizarion is given as 2n2m- ]n3 1:S1. fnls
is negligible compared to the metaheuristic results and is not
shown in the graph. Based on these results, one may choose
between probabilistic ANN, modified GA, and SA depending
on the requirement of computation. If the given system is
not very complex and speed of convergence is important, SA
may be the recommended method to use. For more complex
systems, either the probabilistic ANN or modified GA may
be used. Between the two, if speed is of bigger importance,
then probabilistic ANN is a recommended. But if accuracy of
results is the major concern, then GA is the better choice.
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Population size were chosen to be an even number. Rate of convergence
and number of flops are shown, where 100 randomly generated matrices are
considered for each population srze.
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Fig. 10. The norm of error where matrix row size in varied while the column
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system to an overdetermined system as the row size increased,
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Fig. 9. The rate of convergence and flops count for SA where the maximum
number of iterations is varied for a fixed matrix size of 5 x 5. The base number
of iteration is 1900 and is increased by multiplying the iteration factor.

B. Number of lterations vs. Rate of Convergence

In the previous experiment presented, the maximum number
of iterations for probabilistic ANN and SA was fixed at
10,000, and modified GA was fixed at 1000 all throughout
the different matrix sizes. We postulated that increasing the
maximum number of iterations, for all methods discussed will
increase the rate of convergence. An additional experiment
was performed to test this postulate to gain an insight on
the appropriate value of the maximum number of iterations.
The matrix size 5 x 5 was chosen for this setup. The results
of the experiments are shown in Figs. 7-9 where the rate of
convergence is plotted together with the number of flops.

For probabilistic ANN shown in Fig. 7 to achieve a rate
of convergence of around 80Vo and become comparable to
the modified GA, the maximum number of random walks or
perturbations must be increased to 20. A perturbation is per-
formed for every 1,000 iterations, thus the maximum number
of iterations at 20 perlurbations is 20,000. Its corresponding
total number of flops is around 40 x 10s compared to the
modified GA which is around five times more. A further
increase in the maximum number of iterations would increase
the rate of convergence of probabilistic ANN until it reaches
around 907o at 60,000. At this points its total flops is around
78 x 105. which is still lower than the modified GA.

0.45

0.4

0.35

0.3

6t 0.2s

r  o 2

t  ^ . -

0 . 1

0.05

0

Fig. 11. The norm of error when the column size of the matrix is varied.
The row size remains fixed at 5. The linear systems ofequations started from
an overdetermined system to an underdetermined system as the column size
is increased.

The results of varying the population size of modified GA
for matrix size 5 x 5 is shown in Fig. 8. Even at population
size of six, its rate of convergence still showed at around 807o
and its total flops is around 10 x 10o which is already less
than three times that of probabilistic ANN. Increasing further
the population size to around 30, with a corresponding flops
count of around 150 x 106. does not significantly increase its
rate of convergence. In this case, probabilistic ANN proved
superior to modifled GA.

The results in varying the maximum number of iterations for
SA is shown in Fig.9 with a 5 x 5 matrix size. The base max-
imum number of iterations is 1000 and this is subsequently
increased by multiplying it with the iteration factor. The figure
showed that by further increasing the maximum number of
iterations to 20,000 the rate of convergence will increase
to around 85Vo, as compared to 50Vo when the maximum
iteration is 10900. With this rate of convergence, the number
of flops is around 80 x l0o which is around four times that
of the modified GA. The significant decrease in the rate of
convergence for SA as the search space becomes bigger is
because it lacks the parallel computation that is inherent to
GA and ANN. In this case. modified GA proved superior to
SA.
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C. Underdetermined and Overdetermined Systems
Figs. 10 and 11 showed the values of the norm of the

error when the matrices are allowed to be non-square. In this
way, the linear system of equations is allowed to become
an underdetermined, determined, or overdetermined system.
The flgures show that for overdetennined systems v*rere
convergence to an error norm of less than 0.01 is not possible,
the norms of error of the metaheuristic computations are
comparable to that of the QR factorization. Thus all four
methods of computations outputted the minimum-norm resid_
ual solution, which is the best possible solution to the given
system of equations. We can therefore state that when a true
solution does not exist, a metaheuristic approach approximates
the best solution that is comparable to the solution found by
a non-heuristic computation.

VII. CONCLUSION AND RECOMMENDATIONS

This work has shown that linear systems of equations for
determined, underdetermined, and overdetermined systems can
be solved using metaheuristic computations, namely, proba_
bilistic artificial neural network, modified genetic algorithm,
and simulated annealing. A new version of genetic algorithm
was also presented with a novel method of parent matching and
mutation strategy. This work will serve as a tool of understand_
ing the basic methodologies of metaheuristic computations in
computing root-finding or optimization problems for a given
set of input parameters, objective function, and desired results.
The methods of computations searched the minimum-norm
residual solution and are compared against eR factorization.
For the case of overdetermined systems where no true solution
exists, the approximated solutions found are comparable to
that of QR factorization. The computations presented will
be tested in the actual humanoid robot dynamics paftrmeter
identification which will be the continuation of this work.
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