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This work presents a method of identifying the dynam-
ics parameters of rigid-body manipulators through
the minimization of its natural oscillations. It is as-
sumed that each link has an actuated joint that is dif-
ferent from its center of mass, such that its driving
torque is influenced by gravitational force. In this ear-
lier results of our study, it is assumed that the iner-
tias can be expressed in terms of the mass and center
of mass. This work utilizes the actual force of grav-
ity for the manipulator link to achieve natural oscil-
lation. The oscillatory motion allows the system to be
converted into an optimization problem through the
minimization of the frequency of oscillation. The cor-
rect dynamics parameters are found when the mini-
mum frequency of oscillation is achieved. The pro-
posed method is analyzed and a theorem is presented
that supports the claims presented in this work to-
gether with implementation results.
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1. Introduction

The absence of a direct procedure to identify the full
dynamic parameters of multi-linked bodies remains one
of the major challenges in achieving full dynamics con-
trol of manipulators. This is especially true as the de-
grees of freedom of manipulators increase as in the case
of humanoid robots. Earlier work on manipulator arms
that attempted to identify their dynamic parameters in-
clude the inertial parameters of the Asada Direct Drive
arm determined by the use of batch least squared error pa-
rameter estimation [1], adaptive control with on-line dy-
namics identification on the Adept | arm [2], and an ex-
periment that was dependent on the condition number of
the persistent excitation matrix and to optimize this condi-
tion number using the calculus of variations [3]. More re-
cent identification procedures of manipulator arm dynam-
ics include the use of torque data [4], foating-base motion
dynamics [5], iterative learning [6], neural network aided
identification [7], set membership uncertainty [8], and

13]. Some examples of identification procedures for hu-
manoid robot dynamics used neural network [14], and
fuzzy-stochastic functor machine [15].

A successful dynamics identification [16] and imple-
mentation on a mobile manipulator tasked to perform an
aircraft canopy polishing [17] is one of the few successful
implementations on full dynamics manipulator control.
The method of identification is based on the oscillatory
motion of each link, with the dynamics parameters treated
as lumped models. Because a the derivation of a simpli-
fied symbolic model can be very computationally tasking,
especially for higher degrees of freedom robot, the identi-
fication procedure presented in [17] becomes impractical
to implement in humanoid robots.

The contribution of this work lies in the identification
of each of the individual dynamics parameters, and not
of the lumped models. This method of dynamics iden-
tification will become more practical to implement with
the higher degrees of freedom manipulators like a hu-
manoid. The experimental procedure will let each link of
the manipulator achieve natural oscillation. Once this is
achieved, the method now now becomes an optimization
computation with an objective to minimize the frequency
of oscillation. A higher frequency of oscillation reflects
an overcompensation of the dynamics parameters, while
an under compensation will make the system drop due to
the gravitational force. The correct mass, center of mass,
and inertial parameters correspond to the least frequency
of oscillation given an initial perturbation from equilib-
rium. This work on dynamics parameters modeling and
identification can be further extended to humanoid ob-
ject manipulation [18] and motion planning [ 19-22] to be
used in our laboratory for the robot soccer competition.
Some strategies on humanoid robot modeling and control
include fuzzy neural network [23], global dynamics [24].
and ground interaction control [25].

2. Overview

2.1. An Inverted Pendulum

The sum of the kinetic energy K and potential energy P
of an upright pendulum, as shown in Fig. 1, consisting of
a slender bar with mass m and length [ is

simultaneous identification and control [9]. Identifica- 2

tion procedures that are more robot specific include [10- R . (lmﬁ) (ﬁ) _ l,,m,lcmg (1)
2\3 dt 2 T
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Fig. 1. Subfigure(a) shows an upright pendulum turning
about point A due to gravity and an initial displacement from
equilibrium position. Subfigure(b) shows the free body dia-
gram.

and is constant, where g is the gravitational constant and 8
is the angular displacement from the vertical axis. Taking
the time derivative and assuming small angular displace-
ments, the above equation can be expressed as

d*0  3g
(”3{'5620....,.......(2)

with constant frequency of oscillation ®* = 3g/2/. This
relationship shows the frequency of oscillation being de-
pendent on the physical characteristic of the pendulum.
Thus a different pendulum with different physical char-

acteristics will give a different value of the frequency of

oscillation. With no torque given at point A, the only mo-
ment acting on the pendulum is that due to gravity. Given
an initial displacement, this moment will cause the system
to respond with angular acceleration and achieve natural
oscillation.

Next we consider and inverted pendulum as shown in
Fig. 2. This time, a torque 74 is given at point A as shown
in the free-body diagram of Subfigure (b). With the torque
sent to the system that is equal to the moment due to grav-
ity, the inverted pendulum will now “float” against grav-
ity. When an initial push is given, the inverted pendulum
will achieve angular acceleration such that the effective
torque sent to the system is

1 .
TA:(ilmrlz)G—i-;.fng.’SinQ. T )

That is, the effective torque sent at point A is the differ-
ence (or sum) between the given initial push that resulted
into an acceleration and the moment due to gravity. The
difference will vary depending on the value of the angu-
lar displacement of the inverted pendulum. This created a
spring-like toque at point A and resulted in a natural os-
cillation of the inverted pendulum.

2.2. The Frequency of Oscillation

The value of the gravitational compensation torque that
is sent to the manipulator will depend on the values of
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Fig. 2. Subfigure(a) shows an inverted pendulum. Subfig-
ure(b) shows the free body diagram such that the gravita-
tional compensation is sent to the system all the time which
results into a system that is floating against gravity.

the dynamics parameters model. When this torque is ap-
plied. and an initial disturbance from rest is given to the
manipulator, it will result into a manipulator achieving a
certain frequency of oscillation. Higher values used in the
dynamics model will result into a higher frequency of os-
cillation due to bigger torque sent to the pendulum. Lower
values of these parameters will result into a system mov-
ing at a lower frequency of oscillation. Much lower values
can possibly result into a manipulator falling due to grav-
itational force. In this dynamics parameter identification,
it is the actual force of gravity that is being utilized to de-
fine the critical boundary for the identification of the cor-
rect values of the dynamics parameters. The main objec-
tive is to minimize the frequency of oscillation such that
the dynamics parameters are not overcompensated which
results into higher frequency of oscillation or under com-
pensated which results into a system falling under grav-
itational force. By doing this, the problem becomes an
optimization problem with an objective function

minw(/.m,r) . . . . . . . . ... .. (4

where @ is the frequency of oscillation that is a function
of inertia /, mass m, and center of mass r. The above equa-
tion is for the general case where the dynamics parameters
are dependent on inertia, mass, and center of mass.

2.3. Multi-Linked Rigid Body Dynamics

The general case of the multi-linked rigid body dynam-
ics of a manipulator will be presented. The torque to be
sent to each joint of the robot is computed by taking the
kinetic energy K and potential energy P and solving the
Lagrange equation of L = K — P [26]

d [dL JdL . 5)

dt 85},— 8q,— B 3
such the joint torque vector is expressed as

t=A(q)§+c(q.q) +glq). ... ... . (6)

The symbol A(q) is the joint-space inertia matrix, ¢(q,q)
is the Coriolis and centrifugal forces vector, g(q) is the
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gravitational terms vector, and §.q.q are the joint space
acceleration, velocity, and displacement. The control
equation is given as

i=4s—-k(qd-qs)-kp(q—qs) . . . . . (7)

where the proportional k,, and derivative k, gains are set
to zero, and the desired acceleration Gy 1s set to zero as
well. This makes an open-loop system and subsequently.
the first term of Eq. (6) equals to zero. The torque sent
to the manipulator joints would be the Coriolis and cen-
trifugal forces and the gravitational terms. The general
case of multi-linked rigid body now becomes the same
as the one link with the added Coriolis and centrifugal
forces, which initially is equal to zero when the system
is at rest. When the system is given an initial push, the
total effective torque includes that due to acceleration q.
the gravitational forces, and the Coriolis and centrifugal
forces which are now active because the joint velocities
are nonzero.

In the experimental procedure presented in this work.
G of the control Eq. (7) is always zero so the terms in
Alq) of Eq. (6) cannot be identified. To address this,
the method proposed in this work will express the iner-
tia terms in terms of mass and center of mass, which are
identified through the gravitational terms model. This ap-
proach can be sufficient in most cases considering that the
link design in most manipulators are symmetric. The in-
ertia model to use in expressing it in terms of mass and
center of mass can be derived based on the geomelry of
the manipulator links.

3. The Proposed Dynamics Identification
Method

In this section we will show a mathematical proof of
the proposed method to support the claims in this work in
identifying mass, center of mass, and moment of inertia.
In addition. corresponding algorithms will be shown.

Given a physical system such that each link is influ-
enced by gravitational force, the dynamics parameters can
be identified by letting the system achieve natural oscilla-
tion through the force of gravity. It is assumed that the
links move at small angular displacements around =+ 15°
away from zero gravity axis. Friction contribution is dis-
regarded in this work and will be addressed in the future.
A symbol [J on a physical system denotes its approxima-
tion.

Theorem 1: A multi-link rigid manipulator with rey-
olute joints is under torque control and is influenced by
gravitational force. Its minimum frequency of oscillation
@ 1s achieved when the estimated physical parameter val-
ues in the mathematical model are closest to the values in
the physical system.

Proof:

Case I. Single Degree-of-Freedom. Equating the
torque between the physical system and the mathemati-
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cal model results in

T=10+g(8)=Tu+g®6) . . . . . ... (8

where the control equation u = 6, — k(0 — 64) — kp(6 —
6,;). Setting 1 = 0 results into open-loop control such that
" 0)—g(o :
9+§'-(¥{_J:U. !
Because of relatively small angular displacements, Eq. (9)
can be considered as an undamped linear second-order
system [27] where

®® = f(g(0) — 3(6)). - (10)
Because / is constant, @ is minimum when g(8) = £(0).
Case 11. Multiple Degree-of-Freedom. The torques

sent Lo the physical system and the mathematical model
are equal and can be expressed as,
T=A(6)0+¢(6,0)+g(0)
=A(0)u+¢(6.6)+3(0). o (I
With relatively small joint velocities, Coriolis and cen-
trifugal forces are less dominant and are ignored. With
small angular displacements, gravitational terms can be
considered linear. Setting the control equation u = 0 re-
sults into

6+A(6) '[(g(9)—g(6))). e (1)

With the small angular displacement A(6) can be con-
sidered constant. As the correct parameter values are ap-
proached. the system becomes decoupled such that each
link can be independently considered as second-order un-
damped linear system [27] where

o’ = f(g(6) —&(8)). L (13)
The minimum @ is achieved when g(6) = §(6). |

3.1. The Algorithm

The algorithm for the dynamics identification through
natural oscillation of each link of a given manipulator is
presented in the following.

1. Select large values for the inertia, mass, and center
of mass to initialize the dynamics parameters of the
manipulator links,

2. For each of the joint i, send the torque 7; correspond-
ing to the Coriolis and centrifugal forces and the
gravitational term,

3. Give the system an initial perturbation to move it
from rest. The system will now oscillate as an in-
verted pendulum.

4. Measure the frequency oscillation @.

5. Adjust the values of the dynamics parameters to min-
imize the frequency of oscillation.

6. Repeat the previous step until the dynamics parame-
ters corresponding to the minimum frequency of os-
cillation is found.
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