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Abstract

This work presents a re-derivation of relative Jacobian matrix for parallel manipula-
tors, expressed in terms of the individual manipulator Jacobians and multiplied by their
corresponding transformation matrices. This is particularly useful when the individual
manipulator Jacobians are given, such that one would not need to derive an entirely new
expression of a relative Jacobian but will only use the existing manipulator Jacobians and
perform the necessary transformations. In this work, the final result reveals a wrench
transformation matrix which was not present in previous derivations, or was not explic-
itly expressed. The proposed Jacobian expression results in a simplified, more compact
and intuitive form. It will be shown that the wrench transformation matrix is present in
stationary as well as mobile combined manipulators. Simulation results show that at high
angular end-effector velocities, the contribution of the wrench transformation matrix can-
not be ignored.

Highlights: B A relative Jacobian is derived and expressed in terms of the individual
manipulator Jacobians. B Previous forms of a relative Jacobian were unsimplified, and
were not expressed in terms of the wrench transformation matrix. B The simplified relative
Jacobian presented in the work is more compact, intuitive, and is easier to implement when
the manipulator Jacobians are given.
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Figure 1: The dual-arm consisting for robot A and robot B, with attached frames {1}, {2}, {3}, and {4}. In
this work, robot A is also called reference robot, while robot B is also called tool robot. The corresponding
rotation matrices and position vectors with respect to the attached frames are shown.

1. Introduction

When manipulators are combined to perform a given task, the use of a relative Jaco-
bian [1–4] affords a treatment of the combined manipulators as one single manipulator.
The advantages of such an approach can be two-fold: (1) all the principles of single ma-
nipulator control can be applied to the combined manipulators, and (2) the dimension of
the null space increased drastically compared to individually controlled manipulators. For
example, given two six-degrees-of-freedom (6-DOFs) manipulators that move in the full
space, no null space exists when the manipulators are controlled individually. But by treat-
ing the same manipulators as a single manipulator through the use of a relative Jacobian, a
full-space motion allows a 6-DOFs null space [5]. Figure 1 shows a dual arm system with
robot A (reference robot) and robot B (tool robot).

Pioneering work on relative Jacobian [1, 2] derived an entirely new formulation with-
out using the existing Jacobians of the individual manipulators. Succeeding formulations
were expressed in terms of the individual manipulator Jacobians [3, 4], but did not include
the wrench transformation matrix [6–9]. More recent derivations [10–13] showed the in-
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dividual manipulator Jacobians that are corrected in terms of the relative position vector
rotations. However, the final expression remain in an unsimplified and non-compact form,
and did not reveal the wrench transformation matrix. Furthermore, the case of mobile
manipulators was not considered. Recent advances in combined manipulators that used
the relative Jacobian approach include modular approach [14, 15], acceleration and torque
redistribution [16], humanoid walking robot [17], behavioral control for autonomous sys-
tems [18], conflicting performance criteria [19], and cooperative manipulation [5, 20, 21].
Some advances on combined manipulators and dexterous manipulation include [22–26].

This work will present a step-by-step derivation of relative Jacobian for combined
manipulators expressed in terms of the individual manipulator Jacobians, that results in a
simplified and more compact form of the final expression. This is important because it
makes the relative Jacobian expression more intuitive and easier to implement when the
individual Jacobians are given.

Firstly, the proposed method is intuitive because it retains the information of each
manipulator as a component of the single controller, such that the contribution of individ-
ual manipulator can be easily identified. As compared to more recent studies on relative
Jacobian [10–13], where the individual manipulator Jacobians were not expressed inde-
pendently. In addition, the necessary transformations for each individual Jacobian are
explicitly given which give insight on understanding on the composition of the relative
Jacobian.

Secondly, the proposed method can be easily implemented, when given the individual
Jacobians, because it will not be necessary to derive an entirely new Jacobian of the com-
bined manipulators. The method in this work will make use of the existing Jacobian of
each manipulator, and will only require to derive the corresponding rotation and wrench
transformation matrices. As compared to the earlier work on relative Jacobian [1, 2] which
derived a totally new relative Jacobian, or where the results are unsimplified [10–13].

Thirdly the proposed method is more accurate at higher angular velocities of the ref-
erence robot end-effector, as compared to the case where the wrench transformation was
not considered [3, 4]. Experimental results will be shown. In addition, an analytical
approach will be presented to compare the proposed method against this previous formu-
lation. Lastly this work will also present the relative Jacobian expression when the base of
each manipulator is moving.

This work proceeds as follows. Section 2 shows the details of derivation for combined
manipulators with stationary bases, while Section 2.2 shows the case when the bases are
moving. Simulation results on the effect of the wrench transformation matrix at higher
angular velocities is shown in Section 3. And lastly, the conclusion of this work is shown
in Section 4.
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2. Derivation of a More Compact Relative Jacobian

Figure 1 shows a dual-arm robot with its corresponding reference frames {1}, {2}, {3},
and {4} used in the derivation for a relative Jacobian. Appendix A presents preliminary
derivations in rotational and translational velocities. The final form shows individual ma-
nipulator Jacobians with their corresponding transformation matrices.

2.1. The Case of Stationary Bases
With reference to Appendix A, the following were defined. A given dual-arm robot

consists of two manipulators A and B (as shown in Fig. 1), with corresponding Jacobians
JA =

[
JpA; JoA

]
and JB =

[
JpB; JoB

]
that are expressed in terms of the position and orien-

tation velocity components. Its joint velocities are θ̇A and θ̇B. Position i p j and orientation
iR j terms are expressed with respect to frames i and j, and their corresponding velocities
are i ṗ j and iω j. Lastly, S (i p j) is a skew-symmetric matrix with input vector i p j, and I is
an identity matrix.

From Appendix A, we combine the translational and rotational velocities together to
get [2 ṗ3

2ω3

]
=

[
−2R1JpAθ̇A + S (2 p3) 2R1JoAθ̇A + 2R4JpBθ̇B

−2R1JoAθ̇A + 2R4JoBθ̇B

]
=

[
−2R1JpA + S (2 p3) 2R1JoA

2R4JpB
−2R1JoA

2R4JoB

] [
θ̇A
θ̇B

]
=

[ [
I −S (2 p3)
0 I

] [
−2R1 0

0 −2R1

] [
JpA
JoA

] [2R4 0
0 2R4

] [
JpB
JoB

] ] [
θ̇A
θ̇B

] (1)

Thus a more compact form of the relative Jacobian, JR, can be expressed as

JR =
[
−2Ψ3

2Ω1JA
2Ω4JB

]
, (2)

where
iΨ j =

[
I −S (i p j)
0 I

]
and iΩ j =

[iR j 0
0 iR j

]
. (3)

The wrench transformation matrix, 2Ψ3, did not appear in the previous expressions of the
relative Jacobian. This term is normally present in parallel mechanisms [6–8], which in
this case, the dual-arm is in effect a parallel mechanism, where 2 p3 is considered constant
and rotating about the robot A end-effector. The contribution of this term in the relative
translational velocity can be negligible when the rotational velocity of the robot A end-
effector is close to zero.
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As shown in (2), it is clearly seen that in order to derive the relative Jacobian JR using
the proposed method, one only needs to derive the wrench transformation matrix iΨ j and
the rotation matrix iΩ j, then incorporate the Jacobians of the standalone manipulators JA
and JB to form the relative Jacobian JR. In this way, when the individual manipulator
Jacobians are given, there is no need to derive the relative Jacobian from scratch as shown
in earlier studies [1, 2], or compute a number of unsimplified terms [10–13]. This supports
the claim in this work for ease of implementation. In addition, because the components
of the relative Jacobian are effectively modular, one or both robots can be removed and
replaced other robots and their corresponding Jacobians. Or when locations of the robot
bases changed, only the transformation matrices need to be modified.

The claim of intuitiveness of the proposed method is supported in the following. The
standalone Jacobians are explicitly shown such that the contribution of each robot to the
relative Jacobian JR is clearly identifiable. Thus, the individual control for each manipu-
lator can still be performed but it now becomes a component of the overall controller of
the combined manipulators. As a result, each manipulator does not lose its individuality
and, at the same time, the resulting controller enjoys the simplicity of a single manipulator
control. In addition, the corresponding rotation matrix iΩ j transforms each manipulator
Jacobian from its base frame to the global reference frame (end-effector of reference robot
A). Furthermore, only JA is multiplied by wrench transformation matrix iΨ j because its
end-effector is where the moving global reference frame is attached. This is analogous to a
parallel mechanism with wrench transformation matrices in its Jacobian [6–8], where the
global reference frame is attached to the moving platform. Such insights on the contribu-
tion of the individual Jacobians and their corresponding transformations would not have
been possible if the terms were not explicitly grouped.

2.2. The Case of Mobile Bases
In Appendix A, we assumed that the bases are not moving, that is, 1Ṙ4 = 1 ṗ4 = 1ω4 = 0.

In this subsection, we will consider the case when the values of these terms are nonzero.

2.2.1. Rotation
From (A.1), we set 1Ṙ4 , 0 such that the middle term in its last expression becomes

2R1
1Ṙ4

4R3 = 2R1S (1ω4) 1R4
4R3 = 2R1S (1ω4) 2RT

1
2R3 (4)

where we repeat the same process as in (A.3), that is, we cancel 2R3 and the S (ω) operator.
And by using RS (ω)RT = S (Rω) [27], we get the final term for the moving base to be

2ω′3 = 2R1
1ω4 (5)
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which we will add later to (A.4) to combine the mobile base and manipulator terms. By
simplifying further the above equation, we get

2ω′3 = 2R1(1ω0 + 1R0
0ω4)

= −2R1
1R0

0ω1 + 2R1
1R0

0ω4

= −2R0
0ω1 + 2R0

0ω4

(6)

2.2.2. Translation
By setting 1ω4 , 0 and 1 ṗ4 , 0, the cancelled terms in (A.7) to (A.8) becomes,

2 ṗ′3 = −S (2R4
4 p3) 2R1

1ω4 + 2R1
1 ṗ4

= −S (2R4
4 p3) 2R1(−1R0

0ω1 + 1R0
0ω4)

+ 2R1(−1R0
0 ṗ1 + 1R0

0 ṗ4)

= S (2 p3) 2R0
0ω1−S (2 p3) 2R0

0ω4−
2R0

0 ṗ1 + 2R0
0 ṗ4

(7)

2.2.3. Combined Rotation and Translation
By combining the results in (6) and (7), we get,[2 ṗ′3

2ω′3

]
=

[
−2R0

0 ṗ1 + S (2 p3) 2R0
0ω1 + 2R0

0 ṗ4−S (2 p3) 2R0
0ω4

−2R0
0ω1 + 2R0

0ω4

]
(8)

Then we set the motion of mobile base of robot A to be[0 ṗ1
0ω1

]
=

[
JbpAθ̇bA
JboAθ̇bA

]
= JbAθ̇bA (9)

where JbA is the Jacobian for the base of robot A with corresponding position, JbpA, and
orientation, JboA, parts and θ̇bA is the configuration space velocity of the robot A base.
Whereas the motion of the base of robot B can be expressed as[0 ṗ4

0ω4

]
=

[
JbpBθ̇bB
JboBθ̇bB

]
= JbBθ̇bB (10)

where JbB is the Jacobian for the base of robot B, and is composed of position, JbpB, and
orientation, JboB, parts. The configuration space velocity of the robot B base is θ̇bB.

So we substitute the Jacobian terms in (9) and (10) into (8) to get

6



[
−2R0JbpA + S (2 p3) 2R0JboA

2R0 JbpB−S (2 p3) 2R0JboB
−2R0JboA

2R0JboB

] [
θ̇bA
θ̇bB

]
=

[ [
I −S (2 p3)
0 I

] [
−2R0 0

0 −2R0

]
JbA

[
I −S (2 p3)
0 I

] [2R0 0
0 2R0

]
JbB

] [
θ̇bA
θ̇bB

]
.

(11)

By combining the manipulator and base velocities we get,

[2 ṗ3T
2ω3T

]
=

[ 2 ṗ3 + 2 ṗ′3
2ω3 + 2ω′3

]
= JRT


θ̇bA
θ̇A
θ̇bB
θ̇B

 (12)

where JRT is the total relative Jacobian of the combined manipulators and mobile bases,
and is expressed as

JRT =
[
−2Ψ3

2Ω0JbA −2Ψ3
2Ω1JA

2Ψ3
2Ω0JbB

2Ω4JB
]
. (13)

3. The Effect of the Wrench Transformation Matrix

This paper builds on the expression of the wrench transformation matrix that results in
a simplified, compact, and more intuitive expression of the relative Jacobian. It is further
claimed that the inclusion of the wrench transformation matrix results in greater accuracy.
The purpose of this section is to show such effect and compare it with the results when the
wrench transformation matrix is not considered [3, 4]. Particularly, the results will show
the contribution of −S (2 p3) of the wrench transformation matrix in (1). Both analytical
approach and numerical simulation are shown.

3.1. Analytical Approach
Let J′R be the previous relative Jacobian without the transformation matrix [3, 4]. We

want to prove that the statement “the null space of JR is in the row space of J′R” is false.
Let us assume that JA and JB are 6×6 and have full rank such that that JR and J′R are 6×12
and are full rank.

Suppose that the null space of J′R lies in the row space of JR. Since both of these linear
spaces have the same dimension, and one is contained in the other, it follows that they are
equal. We then have the row spaces of J′R and JR that are orthogonal to each other. This
can be written as

JR J′TR = 0. (14)
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From (2) (where we omit the Ω’s for simplicity), we have J′R and JR of the form

J′R =
[
JA JB

]
JR =

[ [
I −S
0 I

]
JA JB

] (15)

Substituting the above expressions into (14) gives

0 =

[ [
0 −S
0 0

]
JA + JA JB

] [
JT

A
JT

B

]
0 =

[
0 −S
0 0

]
JAJT

A + JAJT
A + JBJT

B[
0 S
0 0

]
JA JT

A = JA JT
A + JB JT

B

(16)

Since JA is full rank and thus invertible, we have[
0 S
0 0

]
= (JA JT

A + JB JT
B ) (JA JT

A )−1 (17)

Now the 6×6 matrices JA JT
A and JB JT

B are symmetric, positive definite so their sum
JA JT

A + JB JT
B is also symmetric, positive definite and hence has full rank. As the product

of two square full rank matrices, the right hand side of (17) has full rank. However, the
left hand side of (17) clearly does not have full rank (the last three rows are zero rows and
the skew-symmetric matrix S has rank 2 or is the zero matrix). We thus conclude that (17)
cannot hold, and consequently, (14) does not hold.

One implication in the above result is that there is a null vector of JR that is not in the
row space of J′R. One possible interpretation to this is that there is a local self-motion that
does not cause the robot with Jacobian JR to move but will cause robot with Jacobian J′R
to move.

3.2. Numerical Simulation
The simulation consists of a primary task, that is the relative motion of the robot B

end-effector with respect to the robot A end-effector, ẋR, and a secondary task, which
is the motion of the robot A end-effector, ẋA, in the null space. The inverse kinematics
solution is

q̇ = J+
R ẋR + (I− J+

R JR)[JA 0]+ ẋA, (18)
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Figure 2: Snapshots of the dual arm taken at every two seconds where the robot A (reference robot) end-
effector moves with respect to the robot B (tool robot) end-effector. Starting at 1s the reference robot end-
effector draws a square while the tool robot end-effector draws a circle relative to the reference robot end-
effector. The drawing task ended at 10s.
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where ẋR draws a circle of radius 0.1 m and ẋA draws a square of side 0.2 m, while main-
taining both end-effector orientations to be facing each other as shown in Fig. 2. Both
manipulators start from rest, then goes to the starting location where the position of the
robot A end-effector is pA = [0.5,0,0.4]T and its end-effector orientation is facing for-
ward. From rest to starting location, the robot B end-effector maintains a relative position
pR = [0,0,0.24]T and has a relative orientation that is facing the robot A end-effector.
Once the starting location is achieved (at 1s from rest), both end-effectors commence the
assigned tasks simultaneously. For the same relative motion between end-effectors of
robots A and B, the angular velocity of the reference robot (robot A) is varied by varying
the velocity of its link six: (1) zero rotation, (2) one rotation per second, and (3) three
rotations per second. The results are shown in Fig. 3.

With zero rotation of joint six of the reference robot, there is no change in the relative
orientation between the end-effectors for the assigned motion. So as shown in Fig. 3a,
the root-mean-square (RMS) errors with and without the wrench transformation matrix do
not have significant difference. The maximum RMS error in both cases is around 0.1 mm.
This can be a reason why in the previous work [3, 4], its contribution was ignored because
it does not have much effect at low angular velocities of the reference robot end-effector.

As the angular velocity of the reference robot end-effector is increased (by increasing
the joint six velocity to one rotation per second), a significant RMS error difference can be
observed. Without considering the wrench transformation matrix, RMS error has a maxi-
mum value of 3.3 mm while the case with wrench transformation matrix has a maximum
error of 0.2 mm. And lastly when the joint six velocity is further increased to three ro-
tations per second, RMS error without the wrench transformation is around 10 cm while
the case with wrench transformation matrix remains below half of a millimeter is around
0.45 mm.

4. Conclusion

This paper has shown a more compact expression of the relative Jacobian expressed in
terms of the individual Jacobian matrices. This new expression revealed a wrench transfor-
mation matrix that was not present in previous derivations, or was not explicitly expressed.
The proposed formulation is easier to implement, individual manipulator Jacobians are
given, because one can use the existing manipulator Jacobians and will only need to derive
the corresponding transformation matrices to arrive at the relative Jacobian. In addition,
the method is modular such that when robots or base configurations changed, only the in-
dividual manipulator Jacobians or the transformation matrices change while the rest of the
terms remain the same. The proposed formulation is more intuitive because the grouped
expressions provided insight on the matrix operations that needed to be performed to the
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Figure 3: Root-mean-square (RMS) error of the relative position of the end-effector of robot A (tool robot)
to the end-effector of robot B (reference robot). To verify the effect of the wrench transformation matrix at
higher angular velocity of the reference robot end-effector, the joint six velocity of robot B is varied at: (a)
zero rotation, (b) one rotation per second, and (c) three rotations per second. Results are compared with and
without the wrench transformation matrix.
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individual manipulator Jacobians in order to arrive at the relative Jacobian. Such insight
would not been available if the terms were ungrouped and unsimplified. Analytical pre-
sentation and numerical simulations are used to compare the proposed approach against a
previous formulation without the wrench transformation matrix.

Appendix A. A Preliminary Derivation for Relative Jacobian

The details of derivation for the simple rotation and translation velocities to be used
in the relative Jacobian expression are shown in the following. The assigned reference
frames {1}, {2}, {3}, and {4} are shown in Fig. 1.

Appendix A.1. Rotation
Let us start by deriving the angular velocities because it is simpler than the translational

velocities. This approach will also show the skew-symmetric matrix simplification based
on the method shown in [27]. The the assigned reference frames we can get the following
rotational relationship,

1R2
2R3 = 1R4

4R3
2R3 = 2R1

1R4
4R3

2Ṙ3 = 2Ṙ1
1R4

4R3 + 2R1
1Ṙ4

4R3 + 2R1
1R4

4Ṙ3.

(A.1)

When the bases are not rotating with respect to each other, 1Ṙ4 = 0. Note that Ṙ = ω×R =

S (ω)R [27], where ω is the corresponding angular velocity, such that ω = [ωx,ωy,ωz]T

and

S (ω) =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (A.2)

is a skew-symmetric matrix used to replace the vector cross-product operation. When the
bases are not rotating, (A.1) becomes

2Ṙ3 = 2Ṙ1
1R4

4R3 + 2R1
1R4

4Ṙ3

S (2ω3) 2R3 = S (2ω1) 2R1
1R4

4R3 + 2R1
1R4 S (4ω3) 4R3.

(A.3)

And note that RS (ω)RT = S (Rω) as shown in [27]. Thus the previous equation becomes
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S (2ω3) 2R3 = S (2ω1) 2R3 + 2R4 S (4ω3) 2RT
4

2R4
4R3

= S (2ω1) 2R3 + S (2R4
4ω3) 2R3

2ω3 = 2ω1 + 2R4
4ω3

2ω3 = −2R1
1ω2 + 2R4

4ω3

(A.4)

Given the Jacobian of robot A as JA and the Jacobian of robot B as JB, we separate the

position and orientation component of the Jacobian of robot A to be JA =

[
JpA
JoA

]
, and of

robot B to be JB =

[
JpB
JoB

]
, such that the above equation can expressed as

2ω3 = −2R1 JoAθ̇A + 2R4 JoBθ̇B. (A.5)

Normally, robot A holds the workpiece and is called the reference robot, while robot B
holds the tool and is called the tool robot.

Appendix A.2. Translation
Again, based on the assigned reference frames in Fig. 1, we can derive the following

relationship,

1 p2 + 1R2
2 p3 = 1 p4 + 1R4

4 p3
2 p3 = 2R1(1 p4 + 1R4

4 p3−
1 p2)

= 2R1
1 p4 + 2R4

4 p3−
2R1

1 p2

(A.6)

Then by taking the time derivative,

2 ṗ3 = 2Ṙ1
1 p4 + 2R1

1 ṗ4 + 2Ṙ4
4 p3 + 2R4

4 ṗ3−
2Ṙ1

1 p2−
2R1

1 ṗ2 (A.7)

and because the bases are not moving, 1 ṗ4 = 0, which results in

2 ṗ3 = S (2ω1) 2R1
1 p4 + S (2ω4) 2R4

4 p3 + 2R4
4 ṗ3

−S (2ω1) 2R1
1 p2−

2R1
1 ṗ2

= −S (2R1
1 p4) 2ω1−S (2R4

4 p3) 2ω4 + 2R4
4 ṗ3

+ S (2R1
1 p2) 2ω1−

2R1
1 ṗ2.

(A.8)
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We note that 2ω1 = −2R1
1ω2 and 2ω4 = 2ω1 + 2R1

1ω4 = 2ω1, because the bases are not
moving such that 1ω4 = 0. This results in

2 ṗ3 = S (2R1
1 p4) 2R1

1ω2 + S (2R4
4 p3) 2R1

1ω2 + 2R4
4 ṗ3

−S (2R1
1 p2) 2R1

1ω2−
2R1

1 ṗ2

= (S (2R1
1 p4) + S (2R4

4 p3)−S (2R1
1 p2)) 2R1

1ω2 + 2R4
4 ṗ3

− 2R1
1 ṗ2

= S (2R1
1 p4 + 2R4

4 p3−
2R1

1 p2) 2R1JoAθ̇A + 2R4JpBθ̇B

− 2R1JpAθ̇A.

(A.9)

Then we assign 2 p3 = 2R1
1 p4 + 2R4

4 p3−
2R1

1 p2 to get

2 ṗ3 = S (2 p3) 2R1JoAθ̇A + 2R4JpBθ̇B−
2R1JpAθ̇A. (A.10)
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