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Abstract This paper presents modular dynamics for
dual-arms, expressed in terms of the kinematics and
dynamics of each of the stand-alone manipulators.
The two arms are controlled as a single manipu-
lator in the task space that is relative to the two
end-effectors of the dual-arm robot. A modular rela-
tive Jacobian, derived from a previous work, is used
which is expressed in terms of the stand-alone manip-
ulator Jacobians. The task space inertia is expressed
in terms of the Jacobians and dynamics of each of
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the stand-alone manipulators. When manipulators are
combined and controlled as a single manipulator, as
in the case of dual-arms, our proposed approach will
not require an entirely new dynamics model for the
resulting combined manipulator. But one will use the
existing Jacobians and dynamics model for each of the
stand-alone manipulators to come up with the dynam-
ics model of the combined manipulator. A dual-arm
KUKA is used in the experimental implementation.

Keywords Modular dynamics · Modular relative
Jacobian · Dual-arms · Combined manipulators ·
Dual-arm KUKA · Chain-cleaning task · Wrench
transformation matrix

1 Introduction

Nowadays, robots become much more complicated
compared to their single-arm, stand-alone manipula-
tor predecessor. And because of the need for them to
interact more with humans, robots take on biologi-
cal forms like humans themselves, e.g., dual-arms and
humanoids, and in many cases like animals, e.g., dog-,
cheetah-, gecko-, spider-, snake-robots, etc. In most
cases, these robots in biological forms are combined
manipulators. That is, they are created by combining
two or more stand-alone manipulators in parallel or
series connection or both. Normally, their degrees of
freedom (DOFs) are much higher. For dual-arms (as
shown in Fig. 1) and humanoids, the DOFs are: 25

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10846-016-0361-0-x&domain=pdf
http://orcid.org/0000-0002-6481-1545
mailto:jamisolar@biust.ac.bw
mailto:p.kormushev@imperial.ac.uk
mailto:rroberts@fsu.edu
mailto:darwin.caldwell@iit.it


206 J Intell Robot Syst (2016) 83:205–218

RGBD 
Sensor

Barrett 
Hand

Round 
Sponge 
Tool

Chain 
Links

ATI F/T 
Sensor

Fig. 1 A KUKA dual-arm setup in a chain-cleaning task. The
left hand is equipped with a gripper tool (Barrett hand), while
the right hand (with a force/torque sensor) is attached with a
sponge cleaning tool. A vision module determines the location
for gripping and cleaning

for Compliant Humanoid (CoMan) [1], 34 for Honda
Asimo’s P2 [2], 41 for iCub upper body [3], 43 for
DLR’s dual-arm [4], and 51 for mobile humanoid
Rollin’ Justin [5], to name a few. It is well-known
that for complex robots interacting with their envi-
ronments, the dynamics model provides an optimal
controller in real-time [6]. For combined manipula-
tors, their much more complex structures necessitate
a dynamics model in order to simulate their phys-
ical behavior and subsequently gain a much better
understanding of their physical characteristics. This is
crucial in the design of their appropriate controllers
[7]. Thus, until at the very recent, the dynamics model
of combined manipulators is still actively studied. For
humanoids, these studies include the effects in mod-
elling and simulating a human or a humanoid [8], task
and whole body motion coordination with active force
control [9], a dynamics simulator for humanoid robots
[10, 11], dynamic balance force control for deter-
mining full body joint torques [12, 13], sequential
optimization for impact motions of humanoid robots
[14], human-humanoid postures with external distur-
bances [15], centroidal dynamics of humanoids [16],
humanoid complete dynamics [17], and decoupled
dynamics for NASA-JSC Valkyrie [18]. For dual-
arm robots, studies on their dynamics model include
dynamics of a flexible dual-arm robot using Lagrange
formulation [19], modular dynamics with inertias
expressed at the joint-space level [20], dynamics of a

dual-arm space robot [21, 22], dynamics of a dual-arm
robot for load transport under sliding mode control
[23, 24], dynamics with elasticity at the joints [25],
and dynamics of rigid dual-arms carrying a flexible
load [26].

However for combined manipulators, their com-
plete dynamics formulation can be prohibitively com-
plicated. One way to address this complexity is to
simplify the dynamics model by modularizing it. That
is, we use the existing dynamics model of each of the
stand-alone manipulators and combine them together
to form the dynamics model of the entire system. In
this way, one will not need to derive an entirely new
dynamics expression because the existing dynamics
expression from the stand-alone manipulators can still
be utilized. To formulate the modular dynamics of
combined manipulators, we need to consider two fun-
damental types of connections: parallel (dual-arm) and
series (macro-mini) connections.

This paper aims to derive the modular dynamics
formulation of a parallel-connected combined manip-
ulator, a dual-arm, controlled as a single manipulator
with single end-effector. The treatment of a dual-arm
as a single end-effector manipulator through the use of
the relative Jacobian [27–29] affords a drastic increase
in the null-space dimension and lesser constraints
in the task space. It considers the relative motion
between the end-effectors such that one end-effector
(tool end-effector) moves relative to another end-
effector (reference end-effector). The relative motion
of the tool end-effector with respect to the reference
end-effector is considered to be the single end-effector
motion for the dual-arm. Absolute motion can be
imposed on the reference end-effector. This work
extends the use of modular relative Jacobian for dual
arms [29] by incorporating the modular dynamics into
the kinematics model.

2 The Relative Jacobian

A modular relative Jacobian is shown in [29] and is
stated here for convenience. First let us consider the
dual-arm setup shown in Fig. 1 where the left (refer-
ence) arm grips a chain model, while the right (tool)
arm cleans the chain model with a sponge tool. Its
corresponding frame assignment is shown in Fig. 2.
Given the stand-alone Jacobian of the reference robot
(arm A), JA, and the stand-alone Jacobian of the tool
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Fig. 2 An schematic of the dual-arm setup. Arm A (reference
arm) is attached with a gripper, and ArmB (tool arm) is attached
with a cleaning tool. Corresponding positions and orientations
with respect to the attached reference frames {1}, {2}, {3}, and
{4} are shown

robot (arm B), JB , the modular relative Jacobian, JR ,
expressed with respect to the frame assignment shown
in Fig. 2 can be expressed as

JR = [
QA JA QB JB

]
(1)

where

QA = −
[
I −S(2p3)
0 I

] [ 2R1 0
0 2R1

]
and

QB =
[ 2R4 0

0 2R4

]
(2)

such that position vector ipj , and rotation matrix iRj

are expressed with respect to the reference frames
{i} and {j}. A wrench transformation matrix 2�3 is
defined as

2�3 =
[
I −S(2p3)
0 I

]
. (3)

The symbol S(2p3) is a skew symmetric matrix
with vector input 2p3 defined as

2p3 = 2R1
1p4 + 2R4

4p3 − 2R1
1p2. (4)

The relative task-space velocity for the dual-arm,
ẋR , can be expressed as

ẋR = QA ẋA + QB ẋB (5)

where ẋA and ẋB are the task-space velocities of
robots A and B, respectively.

3 Modular Dynamics in the Relative Task Space

In this section, we present the modular dynamics of
the dual-arm robot in the relative task space. Let us
assign xR to be the relative position and orientation
between the end-effectors, that is, the end-effector of
robot B (tool robot) with respect to the end-effector
of robot A (reference robot), as shown in Fig. 2. The
rest of the conventions used for both robots A and B,
respectively, are: joint space displacements, qA and
qB ; joint space inertias, AA and AB ; joint torques, τA

and τB ; Coriolis and centrifugal forces, hA and hB ;
and gravitational terms, gA and gB . A dot or double
dot on top of a parameter means its corresponding
first or second derivative, respectively. Given the full
dynamics expression of robot A to be τA = AA q̈A +
hA + gA and the full dynamics expression of robot B
to be τB = AB q̈B + hB + gB, the modular dynam-
ics in the relative task space for the dual-arm robot,
formulated based on the operational space formulation
[6, 30] but expressed on terms of the relative Jacobian,
can be stated as

τT = JT
R �R ẍR + (I − JT

RJ
#T
R ) τo − J+

R �R J̇R q̇T

+hT + gT (6)

where τT = [τT
A τT

B ]T , q̇T = [q̇T
A q̇T

B ]T , hT =
[hT

A hT
B ]T , gT = [gT

A gT
B ]T , and τo is the torque gra-

dient in the null space. Thus, the modular relative task
space inertia, �R , is given as

�R = Q−1
A J+T

A AA J+
A Q−1

A + Q−1
B J+T

B AB J+
B Q−1

B .

(7)

The superscript “T ” means transpose, superscript
“+” means pseudoinverse, and superscript “−1”
means inverse. The relative Jacobian, JR , is shown in
Eq. 1; QA and QB are defined in Eq. 2; JA and JA are
standalone Jacobians of robots A and B; and, AA and
AB are the standalone joint inertias of robots A and B.

The dynamically consistent inverse [6] is defined as

J#TR = �R

[
QA JA A−1

A QB JB A−1
B

]
. (8)

The expression in Eq. 6 has a similar form as the
standard full dynamics expression for a single, stand-
alone manipulator. Thus the full dynamics expression
of the dual-arm now becomes analogous to the full
dynamics of a single end-effector manipulator. This
affords a single manipulator control for the dual-arm.
Another advantage of this approach is its modularity:
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we use the kinematics and dynamics model of each
of the stand-alone manipulators to arrive at the full
dynamics expression of the dual-arm. Through this
approach, we do not require to derive a totally new
dynamics expression for the dual-arm, but we make
use of existing model of the stand-alone manipula-
tors to come up with the full dynamics model of the
dual-arm.

The next section will shows the derivation of Eq. 7
which will imply (8). A non-modular approach is
shown in Appendix.

4 Derivation of Modular Inertia for Dual-Arm

In this section, we derive the total inertia for dual-
arm robot in terms of the joint space and relative task
space. The total joint-space inertia for the dual-arm is
labelled AT , and the relative task-space inertia of the
dual-arm is labelled �T .

The total joint space kinetic energy of the dual-arm
robot, KET , can be expressed as

KET = 1

2
q̇T

T AT q̇T (9)

where q̇T = [q̇T
A q̇T

B ]T is the combined joint angles.
The joint space kinetic energy of robot A, KEJA,

and the joint space kinetic energy of robot B, KEJB ,
can be expressed as

KEJA = 1

2
q̇T

A AA q̇A and KEJB = 1

2
q̇T

B AB q̇B.

(10)

Because both joint space kinetic energies are inde-
pendent of each other, the total joint space kinetic
energy can be added as KET = KEJA + KEJB , that
is

KET = 1

2
q̇T

A AA q̇A + 1

2
q̇T

B AB q̇B

= 1

2

[
q̇T

A q̇T
B

] [
AA 0
0 AB

] [
q̇A

q̇B

]

= 1

2
q̇T

T

[
AA 0
0 AB

]
q̇T (11)

Comparing the above equation to Eq. 9, this means
that

AT =
[
AA 0
0 AB

]
. (12)

Now, we consider the total task-space kinetic
energy for the dual-arm, KEO , stated below

KEO = 1

2
ẋT
R �R ẋR. (13)

We use the general relationship between task-space
inertia �, joint-space inertia A, and Jacobian J from
[30], that is, � = [JA−1 JT ]+. Because robot A

moves independent of robot B, its task-space kinetic
energy, KESA, is

KESA = 1

2
ẋT
R

[ [
QA JA 0

] [
A−1

A 0
0 0

] [
JT
A QT

A

0T

]]+
ẋR

= 1

2
ẋT
R

[
QA JA A−1

A JT
A QT

A

]+
ẋR

= 1

2
ẋT
R Q−T

A J+T
A AA J+

A Q−1
A ẋR. (14)

In the same way, robot B moves independent of
robot A, thus its task-space kinetic energy, KESB , is

KESB = 1

2
ẋT
R

[ [
0 QB JB

] [
0 0
0 A−1

B

] [
0T

JT
B QT

B

]]+
ẋR

= 1

2
ẋT
R

[
QB JB A−1

B JT
B QT

B

]+
ẋR

= 1

2
ẋT
R Q−T

B J+T
B AB J+

B Q−1
B ẋR. (15)

Thus, the total task-space kinetic energy of dual-
arms is KEO = KESA + KESB ,

KEO = 1

2
ẋT
R

[
Q−T

A J+T
A AA J+

A Q−1
A + Q−T

B J+T
B AB J+

B Q−1
B

]
ẋR,

(16)

which means that the modular task-space inertia of a
dual-arm, �R , is

�R = Q−T
A J+T

A AA J+
A Q−1

A +Q−T
B J+T

B AB J+
B Q−1

B .

(17)

5 Dual-Arm Experimental Implementation

We present two sets of experiments using our pro-
posed method. First is a chain-cleaning task that shows
uninterrupted relative chain-cleaning motion of the
tool end-effector, despite real-time displacement of
the absolute location of the reference (gripper) end-
effector. Second is an investigative experiment on
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the effect of the wrench transformation matrix to the
relative Jacobian.

5.1 Gravity Compensation

The default gravity compensation setting for the
KUKA lightweight arm is for the horizontal floor
mounting where gravity vector g = [0, 0, −9.81]T . In
order to correct the 60 degrees inclination of the torso
mounting (and another 30 degrees rotation around the
resulting z-axis), the following gravity compensation
corrections were performed: for the right arm

gr = Rz,30 Ry,−60 g (18)

and the left arm

gl = Rz,−30 Ry,−60 g (19)

where Ra,b is the rotation matrix for a correspond-
ing rotation along the a-axis for b-degree angle. This
results into gr = [−7.36, −4.25, 4.91]T and gl =
[−7.36, 4.25, 4.91]T .

5.2 Relative Jacobian Transformations

Here we define the transformation matrices QA and
QB shown in Eq. 2 of the modular relative Jacobian.
These transformations are characterized on how the
bases of robots A and B are placed with respect to
each other.

The rotation matrix 2R1 corresponds to the rotation
of the left hand (robot A) end-effector with respect to
its base, RA. The rotation matrix 2R4 = 2R1

1R4 =
RA

1R4 such that

1R4 = Rz,−30 Ry,−120 Rz,150. (20)

The relative position vector between the end-
effectors of the two arms shown in Eq. 4 can be
expressed as

2p3 = RT
A

1p4 + RT
A

1R4 pB − RT
A pA (21)

where vectors pA and pB are the robots A and B end-
effector positions with respect to their corresponding
bases. Such that

1p4 = Rz,−30 Ry,−150
1p4 base (22)

where 1p4 base = [0, 0, 0.22]T m.

5.3 Relative Hybrid Force/Position Controller

This work does not claim contribution on hybrid
force/position controller. However, we present the
integration of the controller here for clarity of presen-
tation in the control implementation.

From Eq. 6, ẍR can be replaced by the controller
u∗

R such that

u∗
R = �R f∗P + �̄R f∗F (23)

where f∗P is the relative position (and orientation) con-
troller, f∗F is the relative force (and moment) controller,
and �R and �̄R are the corresponding selection matri-
ces where one is the complement of the other. For
simplicity, we refer to the relative position and ori-
entation controller as relative position controller, and
relative force and moment controller as relative force
controller.

Thus the relative position controller can be
expressed as

f∗P = ẍRd
− kvP

(ẋR − ẋRd
) − kpP

(xR − xRd
) (24)

where ẍRd
, ẋRd

, xRd
are the desired relative task space

acceleration, velocity, and displacement, respectively,
and parameters kpP

and kvP
are the proportional and

derivative gains for position control. The relative force
controller can be expressed as

f∗F = fRd
− kpF

(fR −fRd
) −

∫ t

0
kiF (fR −fRd

) dt (25)

where fRd
is the desired relative applied force, fR is

the relative force feedback, parameters kpF
and kiF

are the relative proportional and integral force control
gains, and t is time. The relative selection matrices can
be expressed as follows

�R =
(
RT

R�RRR 0
0 RT

R�RRR

)
(26)

and

�̄R =
(
RT

R�̄RRR 0
0 RT

R�̄RRR

)
(27)

where �R is a diagonal matrix with diagonal elements
of zeros and ones which specifies the desired axes of
position control, �̄R is the complement of �R that
specifies the axes of force control where position is
not controlled, and RR is the corresponding rotation
matrix that specifies the direction of the independent
axes for force or position control.
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5.4 Experiment 1: Chain-Cleaning Task

We implement a hybrid force/position control in a
chain-cleaning task, that has a similar force and
motion controller as the aircraft canopy polishing task
[31, 32], where its dynamics modeling and identifica-
tion are shown in [33–35]. The purpose of the exper-
iment is to show how the task coordination between
the two end-effectors remain uninterrupted, as the
absolute task location is arbitrarily changed in real-
time. In this earlier implementation of our controller,
only the position and force are controlled. Orienta-
tion and moment are not controlled and thus their
corresponding controller gains are set to zero.

For all vectors, the subscripts for the position
components are x, y, and z and for the orientation
components are α, β, and γ . For example, xR =
[xRx , xRy , xRz, xRα , xRβ , xRγ ]T . From Eq. 23, posi-
tion is controlled along xRx - and xRz -axes, while
force is controlled along the xRy -axis. Such that
the selection matrices have the following diagonal
terms diag(�R) = {1, 0, 1, 0, 0, 0} and diag(�̄R) =
{0, 1, 0, 0, 0, 0}. Now we set the values of propor-
tional gains for position and force. From Eq. 24,
we set kpP

= [100, 0, 100, 0, 0, 0]T such that the
desired position along xRx -axis is the initial posi-
tion. The desired position along the xRz -axis is set
to a sinusoidal path xRdz

= A sin(ωt), where A =
0.12 m and ω = 1.26 rad/s. From Eq. 25, we set
kpF

= [0, 0.2, 0, 0, 0, 0]T such that the desired force
along the y-axis is set at fRdy

= 10 N . The kpP
val-

ues are chosen such that non-zero values are set in
the directions that are position controlled, i.e., along
the x− and z− axes. And kpF

values are chosen
such that non-zero value is set in the direction that
is force controlled, i.e., along the y−axis. The gains
were empirically chosen such that the end-effectors
remains stable at the fastest response. Given the con-
troller information above, and the joint space inertia
and gravity terms for both robots A and B, the task
space formulation in Eq. 6 is implemented for a
dual-arm KUKA consisting of two LWR robots. Infor-
mation regarding Coriolis and centrifugal terms were
not available during the experiments. No null-space
controller is implemented thus the torque τo is set to
zero.

Snapshots during the chain-cleaning task are shown
in Fig. 3. Each horizontal photo strip shows one case
of the chain-cleaning task. Horizontal photo strip 1

shows the cleaning task where the location of the
gripper and the cleaning tool are manually set. That
is, the operator manually moves the end-effectors to
the locations for gripping and cleaning, then manu-
ally attaches the gripper on the chain and manually
places the cleaning tool at its starting cleaning loca-
tion. Horizontal photo strip 2 shows the same task
where a shaving foam is used to specify location on
the chain for cleaning or gripping, as detected by the
RGBD sensor. The RGBD sensor is calibrated to iden-
tify the location of the shaving foam: one location for
gripping and another for cleaning. At the start of the
task, each end-effector will approach their respective
desired locations based on the RGBD sensor feedback.
When the end-effector settles to their desired loca-
tions, the operator then manually attaches the gripper
and adjusts the cleaning tool to position. The robot
response is shown in Fig. 4, with the relative positions
xRx and xRz , the relative force fRy , and the absolute
positions of the gripper (reference) end-effector xAx ,
xAy , and xAz which remain stationary.

In the succeeding experiments, the same case
applies as in horizontal photo strip 2: the desired
gripping and cleaning locations of the dual-arm end-
effectors are determined by the RGBD sensor feed-
back. Moreover, disturbances are introduced by the
operator by manually moving the dual-arm end-
effectors, in real-time, as the chain-cleaning task is
performed. In horizontal photo strip 3, the chain is
dragged together with the reference end-effector on
the table surface. As shown in the horizontal strip the
tool end-effector responded automatically to achieve
the desired relative position and force with respect to
the reference end-effector. In horizontal photo strip 4,
the reference end-effector is moved up and down.
The robot response is shown in Fig. 4. And lastly, in
horizontal photo strip 5, the reference end-effector is
moved horizontally and vertically, while the null space
posture of the reference arm is dynamically changed.
The response of the robot is shown in Fig. 5. In both
Figs. 4 and 5, the desired force is maintained on the
average of around 5 N .

5.5 Experiment 2: The Effect of the Wrench
Transformation Matrix

This second experiment will show the effect of the
wrench transformation matrix 2�3 on JR . In previ-
ous expressions of modular relative Jacobian [36–38],
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1

2

4

3

5

Fig. 3 Snapshots of the chain-cleaning task. Horizontal strip 1
shows the cleaning task where the location of the tool and the
gripper are manually placed. Horizontal strip 2 shows the same
cleaning task where the shaving foam is used to assign the
chain portion for cleaning and gripping. In horizontal strip 3,

disturbance is introduced to the gripper arm by moving the grip-
per horizontally along the table. In horizontal strip 4, the gripper
is moved vertically during task execution. And lastly, horizontal
strip 5 shows vertical and horizontal disturbance to the gripper
arm, as well as null space posture disturbance



212 J Intell Robot Syst (2016) 83:205–218

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

M
et

er
s (

m
)

Time (s)

X_Rx X_Rz X_Ax X_Ay X_Az

-4

-2

0

2

4

6

8

10

0 20 40 60

N
ew

to
ns

 (N
)

Time (s)

R Along Y-Axis

F_Ry

Relative XR and Absolute XA Positions

Fig. 4 The graphs show the relative position along xRx and
xRz and relative force fRy during the chain cleaning task.
The absolute position and orientation of the gripper (reference)
end-effector, xA, is arbitrary and not moving

the wrench transformation matrix was considered to
be an identity matrix. Here, we refer to such relative
Jacobian as J′

R . The dual-arm robot will perform a
coordinated independent task with respect to their rel-
ative reference frames. This is shown in Fig. 6. In this
experiment robotB is to open and close a cabinet door,
while robot A exerts a normal force on the other cab-
inet door and moving in an oscillatory manner. Force
is exerted by the tool end-effector along xRy -axis. A
desired sinusoidal motion along the relative xRdz

-axis
for the tool end-effector is specified as

xRdz
= A(cos(ωt) − cos(ωt − φ)) (28)

where A = 0.5 m is the desired amplitude, ω =
0.15π rad/s is the desired angular frequency, t is cur-
rent time, and φ = 10 degrees is the desired phase
shift, which determines the magnitude of the incre-
mental step size. The remaining relative axes are in

motion control, specified to maintain the initial posi-
tion and orientation. Proportional position gains are
set at 200 while proportional orientation gains are at
100. Proportional force gain is set at 0.2. Compared
to Experiment 1, the Experiment 2 relative position
gains can be set higher because the relative orientation
of the tool end-effector is now controlled. However,
the relative force gain is set at the same value as the
previous experiment. The amplitude A is set higher
because the tool robot now can move on a much larger
surface of the cabinet door. The period ω is set lower
in order to maintain an almost the same speed as the
previous experiment. The offset φ of 10 degrees is
set in order to allow incremental sinusoidal motion
and thus allowing an arbitrary starting location of the
oscillatory motion of the the tool end-effector.
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tive force fRy at the tool end-effector with respect to the gripper
end-effector, as well as the absolute position of the reference
end-effector xAx , xAy , xAz
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+XRy
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+XRy

+XRx

Robot B Robot A

Fig. 6 The KUKA dual-arm manipulator performing a coordi-
nated independent task: robot B opening and closing a cabinet
door by moving along the xRy -axis, and robot A exerting a
normal force along xRy -axis on the other cabinet door while
moving along an oscillatory motion along xRz -axis

In Experiment 2 both end-effectors perform differ-
ent jobs: reference end-effector is opening and closing
a cabinet door, while the tool end-effector is “pol-
ishing” the surface of the other door. The reference

end-effector can be thought of as moving in an inde-
pendent manner (independent from the task of the
tool end-effector) while the tool end-effector moves
with respect to the reference end-effector. However,
the motion of the reference end-effector does not have
much effect on the motion of the tool end-effector
because the opening and closing of the door moves
along the xRy , which is the force control direction of
the tool end-effector. Thus in this manner, the tasks of
both end-effectors can be considered to be indepen-
dent of each other. Although the tasks are independent
of each other, the role of the unified Jacobian remains
the same: it affords drastic increase in the null-space
dimension and allows no restriction on the absolute
locations of the task performance, because the tasks
are performed in the relative reference frame. Thus,
the base of the dual-arm can be anywhere with respect
to the cabinet doors, but the coordinated independent
tasks can still be performed. Intuitively, this means
that the dual-arm base can avoid obstacles in a dynam-
ically changing environment while the independent
tasks of the two arms are performed in real-time.

Fig. 7 Force sensor
feedback expressed with
respect to the reference
end-effector frame for the
coordinated independent
tasks experiment. The
normal force exerted on the
other cabinet door is along
xRy . Case JR is shown in
subfigure A and case J′

R is
shown in subfigure B
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Fig. 8 Relative position
errors between tool
end-effector and reference
end-effector during
coordinated independent
tasks experiment. The JR

case is shown in subfigure
A, while J′

R case is shown
in subfigure B.
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The normal force feedback in shown in Fig. 7 and
its corresponding position error is shown in Fig. 8.
Because KUKA does not allow access to a low-level,
real-time controller and the sampling frequency is at
125 Hz, the force control is expected to be non-
optimal. To keep the tool end-effector to maintain
contact during task execution, we specify a desired
normal force of −30 N . For case JR , it is able to
exert a normal force in the average range of around
[0, −11] N (Fig. 7A), while case J′

R is within the aver-
age range of around [2, −5] N (Fig. 7B) and losing
surface contact. As seen in these results, with a much
more complicated task execution between the end-
effectors, a much more superior force control response
was shown by JR , exerting around double the max-
imum force compared to J′

R . At the same time, the
latter case consistently loses contact as indicated by
an offset non-contact force of around 2 N . This offset
force value was set just before task execution.

6 Conclusion

This work has shown a modular task-space dynamics
formulation for dual arms controlled as one manipu-
lator with a single end-effector. The aim of such an
approach is the ease of implementation, by using the
existing kinematics and dynamics model of each of
the stand-alone manipulators to arrive at the overall
dynamics of the single end-effector dual-arm. Thus,
when two arms with known Jacobians and dynam-
ics parameters are combined together, our proposed
method will not require to compute and identify new
dynamics for the combined system, but will use the
existing information from each of the standalone com-
ponents. A derivation of the modular relative task
space inertia matrix is shown, together with a non-
modular derivation that was used to verify the non-
coupling effect of the total joint-space inertia of the
dual-arm. Two experimental results are shown using
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a KUKA dual-arm robot: one performing a chain-
cleaning task and another performing a coordinated
independent task. Experiments showed superior force
control performance of a dual-arm robot when the
wrench transformation matrix is considered in the
modular relative Jacobian.

Acknowledgment The authors would like to thank Roy
Featherstone, Seyed Reza Ahmadzadeh and Jinoh Lee for their
inputs in the development of this manuscript. Acknowledgment
also goes to Fulbright U.S. Scholar Program for the support
given to Rodney G. Roberts during his participation on this
paper.

Appendix: Non-modular Derivation of the Total
Joint-Space Inertia

This section will verify the non-coupling effect of the
total joint space inertia of the dual-arm, AT , shown
in Eq. 12, by using the method of joint-space inertia
derivation of a single manipulator.

Given that frame {i − 1} is located at the joint of
link i and frame {i} is at the tip, such that link i moves
with respect to the z-axis of the {i − 1} frame. Fur-
ther given that the i-th inertia tensor, Ii , is expressed
at frame {i}. The kinetic energy of link i can be
expressed as [39],

KEi = 1

2
q̇T JT

i

[
miI 0
0 RiIiRT

i

]
Ji q̇i (A.1)

where link i Jacobian, Ji , is the manipulator Jacobian
J ∈ R

m×n with zeros from column i + 1 to n, that
is,

Ji =
[
j(1)1 . . . j(i)i 0(i+1) . . . 0(n)

]
, (A.2)

where the column indices are shown as superscripts.
The symbol I is the corresponding identity matrix, and
Ri is the rotation matrix corresponding to the rotation
of frame {i}with respect to the base frame of the robot.
This means that the task space inertia matrix of link i,
�i , which is expressed as

�i =
[

miI 0
0 RiIiRT

i

]
(A.3)

can be perturbed only by joints 1 to i and not by joints
i + 1 to n. The joint space inertia matrix, A, can be
expressed as [39],

A =
n∑

i=1

JT
i �iJi . (A.4)

Thus given robot A with manipulator Jacobian
JA ∈ R

m×nA , link j Jacobian JAj , and link j task
space inertia matrix �Aj , the robot A joint space
inertia, AA, can be expressed as

AA =
nA∑
j=1

JT
Aj�AjJAj . (A.5)

In the same way, given robot B with manipulator
Jacobian JB ∈ R

m×nB , link k Jacobian JBk , and link k

task space inertia matrix �Bk , the robot B joint space
inertia, AB , can be expressed as

AB =
nB∑
k=1

JT
Bk�BkJBk. (A.6)

By following the same analogy, the joint space iner-
tia of the dual-arm robot, AT , can be computed. Given
the dual-arm relative Jacobian, JR ∈ R

m×(nA+nB), the
dual-arm link i Jacobian, JRi , can be expressed as in
(A.7)

JRi =
⎧⎨
⎩

[
j(1)R1 · · · j(i)Ri 0i+1 · · · 0(nA+nB)

]
if i ≤ nA[

0(1) · · · 0(nA) j(nA+1)
R(nA+1) · · · j(i)Ri

0(i+1) · · · 0(nA+nB)
]

if i > nA

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
QA

[
j(1)A1 · · · j(i)Aj 0(i+1) · · · 0(nA)︸ ︷︷ ︸

JAj

0(nA+1) · · · 0(nA+nB)
]

if i ≤ nA

QB

[
0(1) · · · 0(nA) j(nA+1)

B1 · · · j(i)Bk 0(i+1) · · · 0(nA+nB)︸ ︷︷ ︸
JBk

]
if i > nA

(A.7)
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where i = 1, . . . , nA + nB , j = 1, . . . , nA, and k =
1, . . . , nB . In the second equality of Eq. A.7, for the
case of i ≤ nA, columns 1 to nA represent JAj . For
the case of i > nA, columns (nA + 1) to (nA + nB)

represent JBk . This means that in accounting for the

kinetic energy generated by the motion of link i of the
dual-arm robot, this link i can only be perturbed by
either robot A or robot B, and not both. From Eq. A.4,
we set n = nA + nB such that the sum of all the joint
space inertias of the dual-arm is

AT =
nA∑
i=1

JT
Ri �Ai JRi +

nA+nB∑
i=nA+1

JT
Ri �B(i−nA) JRi

=
nA∑
j=1

[
JT
Aj

0T

]
QT

A �Aj QA

[
JAj0

]

+
nB∑
k=1

[
0T

JT
Bk

]
QT

B �Bk QB

[
0JBk

]

=
[ ∑nA

j=1 JT
Aj Q

T
A �Aj QA JAj 0

0
∑nB

k=1 JT
Bk Q

T
B �Bk QB JBk

]
(A.8)

From the last equality above, we can see that the
diagonal terms are equivalent to Eqs. A.5 and A.6. The
existence of QA and QB in the expression takes care
of the fact that the link inertias are expressed at the
relative task-space before converting to joint-space iner-
tias. However, this derivation upholds the non-coupling
of the total joint-space inertia of the dual-arm.
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